Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Neil Bressloff

University of Southampton (GB)

Ostatnie publikacje
1.  Leyva-Mendivil M.F., Lengiewicz J., Page A., Bressloff N.W., Limbert G., Skin microstructure is a key contributor to its friction behaviour, TRIBOLOGY LETTERS, ISSN: 1023-8883, DOI: 10.1007/s11249-016-0794-4, Vol.65, No.1, pp.12-1-17, 2017

Streszczenie:
Due to its multifactorial nature, skin friction remains a multiphysics and multiscale phenomenon poorly understood despite its relevance for many biomedical and engineering applications (from superficial pressure ulcers, through shaving and cosmetics, to automotive safety and sports equipment). For example, it is unclear whether, and in which measure, the skin microscopic surface topography, internal microstructure and associated nonlinear mechanics can condition and modulate skin friction. This study addressed this question through the development of a parametric finite element contact homogenisation procedure which was used to study and quantify the effect of the skin microstructure on the macroscopic skin frictional response. An anatomically realistic two-dimensional image-based multilayer finite element model of human skin was used to simulate the sliding of rigid indenters of various sizes over the skin surface. A corresponding structurally idealised multilayer skin model was also built for comparison purposes. Microscopic friction specified at skin asperity or microrelief level was an input to the finite element computations. From the contact reaction force measured at the sliding indenter, a homogenised (or apparent) macroscopic friction was calculated. Results demonstrated that the naturally complex geometry of the skin microstructure and surface topography alone can play as significant role in modulating the deformation component of macroscopic friction and can significantly increase it. This effect is further amplified as the ground-state Young's modulus of the stratum corneum is increased (for example, as a result of a dryer environment). In these conditions, the skin microstructure is a dominant factor in the deformation component of macroscopic friction, regardless of indenter size or specified local friction properties. When the skin is assumed to be an assembly of nominally flat layers, the resulting global coefficient of friction is reduced with respect to the local one. This seemingly counter-intuitive effect had already been demonstrated in a recent computational study found in the literature. Results also suggest that care should be taken when assigning a coefficient of friction in computer simulations, as it might not reflect the conditions of microscopic and macroscopic friction one intends to represent. The modelling methodology and simulation tools developed in this study go beyond what current analytical models of skin friction can offer: the ability to accommodate arbitrary kinematics (i.e. finite deformations), nonlinear constitutive properties and the complex geometry of the skin microstructural constituents. It was demonstrated how this approach offered a new level of mechanistic insight into plausible friction mechanisms associated with purely structural effects operating at the microscopic scale; the methodology should be viewed as complementary to physical experimental protocols characterising skin friction as it may facilitate the interpretation of observations and measurements and/or could also assist in the design of new experimental quantitative assays.

Słowa kluczowe:
skin, friction mechanisms, contact mechanics, microstructure, finite element, image-based modelling, material properties

Afiliacje autorów:
Leyva-Mendivil M.F. - University of Southampton (GB)
Lengiewicz J. - IPPT PAN
Page A. - University of Southampton (GB)
Bressloff N.W. - University of Southampton (GB)
Limbert G. - University of Southampton (GB)
35p.
2.  Leyva-Mendivil M.F., Lengiewicz J., Page A., Bressloff N.W., Limbert G., Implications of Multi-asperity Contact for Shear Stress Distribution in the Viable Epidermis – An Image-based Finite Element Study, BIOTRIBOLOGY, ISSN: 2352-5738, DOI: 10.1016/j.biotri.2017.04.001, Vol.11, pp.110-123, 2017

Streszczenie:
Understanding load transfer mechanisms from the surface of the skin to its deeper layers is crucial in gaining a fundamental insight into damage phenomena related to skin tears, blisters and superficial/deep tissue ulcers. It is unknown how shear stresses in the viable epidermis are conditioned by the skin surface topography and internal microstructure and to which extent their propagation is conditioned by the size of a contacting asperities. In this computational study, these questions were addressed by conducting a series of contact finite element analyses simulating normal indentation of an anatomically-based two-dimensional multi-layer model of the skin by rigid indenters of various sizes and sliding of these indenters over the skin surface. Indentation depths, local (i.e. microscopic) coefficients of friction and Young's modulus of the stratum corneum were also varied. For comparison purpose and for isolating effects arising purely from the skin microstructure, a geometrically-idealised equivalent multi-layer model of the skin was also considered. The multi-asperity contact induced by the skin topographic features in combination with a non-idealised geometry of the skin layers lead to levels of shear stresses much higher than those produced in the geometrically-idealised case. These effects are also modulated by other system parameters (e.g. local coefficient of friction, indenter radius). These findings have major implications for the design and analyses of finite element studies aiming at modelling the tribology of skin, particularly if the focus is on how surface shear stress leads to damage initiation which is a process known to occur across several length scales.

Słowa kluczowe:
Skin, Microstructure, Contact mechanics, Indentation, Sliding contact, Finite element, Image-based modelling, Material properties

Afiliacje autorów:
Leyva-Mendivil M.F. - University of Southampton (GB)
Lengiewicz J. - IPPT PAN
Page A. - University of Southampton (GB)
Bressloff N.W. - University of Southampton (GB)
Limbert G. - University of Southampton (GB)

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024