Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Beata Dworakowska

Warsaw University of Life Sciences (PL)

Ostatnie publikacje
1.  Stobiecka M., Dworakowska B., Jakieła S., Lukasiak A., Chalupa A., Zembrzycki K., Sensing of survivin mRNA in malignant astrocytes using graphene oxide nanocarrier-supported oligonucleotide molecular beacons, Sensors and Actuators B: Chemical, ISSN: 0925-4005, DOI: 10.1016/j.snb.2016.04.176, Vol.235, pp.136-145, 2016

Streszczenie:
While a significant progress has recently been made in therapy of many cancers, the cure for some high grade cancers, such as the astrocytic cancers, remains elusive. In the latter case, specificity and functionality of the brain tissue limit the options available to surgical and chemotherapeutic treatments. In view of the prospects of reversible blood-brain barrier opening, we have investigated the possibility of a transfection of malignant astrocyte cells with novel graphene oxide nanosheet (GONS) nanocarrier-supported molecular beacons (MB) encoded for the detection of a biomarker survivin (Sur). The behavior of GONS-supported SurMBs (GONS@SurMB) has been characterized using fluorescence spectroscopy, SEM, TEM, Raman spectroscopy, melting transients, resonance elastic light scattering, and cell viability testing. With the GONS@SurMB, we have achieved the limit of detection for tDNA at 37°C: LOD = 24 nM (S/N = 3). In tests with complementary targets and mismatched strands, the proposed fluorescent turn-on GONS@SurMB probes have shown a single-nucleotide polymorphism sensitivity. We have demonstrated the transfection of U-87 MG astrocyte cells with GONS@SurMB nanocarriers which release SurMB upon mRNA detection. The MTT tests indicate that the GONS carrier concentrations up to 133 μg/mL are not cytotoxic to astrocyte cells, although a cell assembly has been encountered at higher carrier concentrations. The GONS alone does not assemble appreciably up to 80 μg/mL. The proposed method can be used for the detection of Sur mRNA in malignant cells and the GONS@SurMB nanocarriers can also be considered as viable candidates for future gene therapy of brain cancers.

Słowa kluczowe:
Survivin detection, Molecular beacon, Graphene oxide nanocarrier, Survivin mRNA, U-87 malignant glioma cells

Afiliacje autorów:
Stobiecka M. - Warsaw University of Life Sciences (PL)
Dworakowska B. - Warsaw University of Life Sciences (PL)
Jakieła S. - Institute of Physical Chemistry, Polish Academy of Sciences (PL)
Lukasiak A. - Warsaw University of Life Sciences (PL)
Chalupa A. - Institute of Nanoparticle Nanocarriers (PL)
Zembrzycki K. - IPPT PAN
40p.

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024