Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Natalia Konchakova


Ostatnie publikacje
1.  Iman P., Salim B., Francesco M., Nicholas F., Hamidreza D., Razie I., Halliru I., Lengiewicz J., Maël B., Kouider B., Ahmed M., Horsch M., Peter K., Mohamed El H., Preisig H., Yacine R., Konchakova N., Daouadji A., Artificial intelligence in materials science and engineering: Current landscape, key challenges, and future trajectories, COMPOSITE STRUCTURES, ISSN: 0263-8223, DOI: 10.1016/j.compstruct.2025.119419, Vol.372, No.119419, pp.1-60, 2025

Streszczenie:
Artificial Intelligence is rapidly transforming materials science and engineering, offering powerful tools to navigate complexity, accelerate discovery, and optimize material design in ways previously unattainable. Driven by the accelerating pace of algorithmic advancements and increasing data availability, AI is becoming an essential competency for materials researchers. This review provides a comprehensive and structured overview of the current landscape, synthesizing recent advancements and methodologies for materials scientists seeking to effectively leverage these data-driven techniques. We survey the spectrum of machine learning approaches, from traditional algorithms to advanced deep learning architectures, including CNNs, GNNs, and Transformers, alongside emerging generative AI and probabilistic models such as Gaussian Processes for uncertainty quantification. The review also examines the pivotal role of data in this field, emphasizing how effective representation and featurization strategies, spanning compositional, structural, image-based, and language-inspired approaches, combined with appropriate preprocessing, fundamentally underpin the performance of machine learning models in materials research. Persistent challenges related to data quality, quantity, and standardization, which critically impact model development and application in materials science and engineering, are also addressed. Key applications are discussed across the materials lifecycle, including property prediction at multiple scales, high-throughput virtual screening, inverse design, process optimization, data extraction by large language models, and sustainability assessment. Critical challenges such as model interpretability, generalizability, and scalability are addressed, alongside promising future directions involving hybrid physics-ML models, autonomous experimentation, collaborative platforms, and human-AI synergy

Słowa kluczowe:
Machine learning, Materials modeling, Materials design, Predictive modeling, Deep learning, Supervised learning, Unsupervised learning, Neural networks, Graph neural networks (GNNs), Convolutional neural networks (CNNs), Featurization, Property prediction, Materials discovery, Process Optimization, Autonomous experimentation, Sustainability, Lifecycle assessment, Digital product passport, Data integration, Standardization

Afiliacje autorów:
Iman P. - inna afiliacja
Salim B. - inna afiliacja
Francesco M. - inna afiliacja
Nicholas F. - inna afiliacja
Hamidreza D. - inna afiliacja
Razie I. - inna afiliacja
Halliru I. - inna afiliacja
Lengiewicz J. - inna afiliacja
Maël B. - inna afiliacja
Kouider B. - inna afiliacja
Ahmed M. - inna afiliacja
Horsch M. - inna afiliacja
Peter K. - inna afiliacja
Mohamed El H. - inna afiliacja
Preisig H. - inna afiliacja
Yacine R. - inna afiliacja
Konchakova N. - inna afiliacja
Daouadji A. - inna afiliacja
140p.

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2025