Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Antonella Calogero

Sapienza University of Rome (IT)

Ostatnie publikacje
1.  Zaccagnini F., De Biase D., Bovieri F., Perotto G., Quagliarini E., Bavasso I., Mangino G., Iuliano M., Calogero A., Romeo G., Pratap Singh D., Pierini F., Caracciolo G., Petronella F., De Sio L., Multifunctional FFP2 Face Mask for White Light Disinfection and Pathogens Detection using Hybrid Nanostructures and Optical Metasurfaces, Small, ISSN: 1613-6810, DOI: 10.1002/smll.202400531, pp.2400531-1-15, 2024

Streszczenie:
A new generation of an FFP2 (Filtering Face Piece of type 2) smart face mask is achieved by integrating broadband hybrid nanomaterials and a self-assembled optical metasurface. The multifunctional FFP2 face mask shows simultaneously white light-assisted on-demand disinfection properties and versatile biosensing capabilities. These properties are achieved by a powerful combination of white light thermoplasmonic responsive hybrid nanomaterials, which provide excellent photo-thermal disinfection properties, and optical metasurface-based colorimetric biosensors, with a very low limit of pathogens detection. The realized system is studied in optical, morphological, spectroscopic, and cell viability assay experiments and environmental monitoring of harmful pathogens, thus highlighting the extraordinary properties in reusability and pathogens detection of the innovative face mask.

Afiliacje autorów:
Zaccagnini F. - inna afiliacja
De Biase D. - inna afiliacja
Bovieri F. - inna afiliacja
Perotto G. - inna afiliacja
Quagliarini E. - inna afiliacja
Bavasso I. - inna afiliacja
Mangino G. - inna afiliacja
Iuliano M. - inna afiliacja
Calogero A. - Sapienza University of Rome (IT)
Romeo G. - inna afiliacja
Pratap Singh D. - inna afiliacja
Pierini F. - IPPT PAN
Caracciolo G. - inna afiliacja
Petronella F. - inna afiliacja
De Sio L. - Sapienza University of Rome (IT)
200p.
2.  Ziai Y., Petronella F., Rinoldi C., Nakielski P., Zakrzewska A., Kowalewski T.A., Augustyniak W., Li X., Calogero A., Sabała I., Ding B., De Sio L., Pierini F., Chameleon-inspired multifunctional plasmonic nanoplatforms for biosensing applications, NPG Asia Materials, ISSN: 1884-4049, DOI: 10.1038/s41427-022-00365-9, Vol.14, pp.18-1-17, 2022

Streszczenie:
One of the most fascinating areas in the field of smart biopolymers is biomolecule sensing. Accordingly, multifunctional biomimetic, biocompatible, and stimuli-responsive materials based on hydrogels have attracted much interest. Within this framework, the design of nanostructured materials that do not require any external energy source is beneficial for developing a platform for sensing glucose in body fluids. In this article, we report the realization and application of an innovative platform consisting of two outer layers of a nanocomposite plasmonic hydrogel plus one inner layer of electrospun mat fabricated by electrospinning, where the outer layers exploit photoinitiated free radical polymerization, obtaining a compact and stable device. Inspired by the exceptional features of chameleon skin, plasmonic silver nanocubes are embedded into a poly(N-isopropylacrylamide)-based hydrogel network to obtain enhanced thermoresponsive and antibacterial properties. The introduction of an electrospun mat creates a compatible environment for the homogeneous hydrogel coating while imparting excellent mechanical and structural properties to the final system. Chemical, morphological, and optical characterizations were performed to investigate the structure of the layers and the multifunctional platform. The synergetic effect of the nanostructured system’s photothermal responsivity and antibacterial properties was evaluated. The sensing features associated with the optical properties of silver nanocubes revealed that the proposed multifunctional system is a promising candidate for glucose-sensing applications.

Afiliacje autorów:
Ziai Y. - IPPT PAN
Petronella F. - inna afiliacja
Rinoldi C. - IPPT PAN
Nakielski P. - IPPT PAN
Zakrzewska A. - IPPT PAN
Kowalewski T.A. - IPPT PAN
Augustyniak W. - Mossakowski Medical Research Centre, Polish Academy of Sciences (PL)
Li X. - Donghua University (CN)
Calogero A. - Sapienza University of Rome (IT)
Sabała I. - Mossakowski Medical Research Centre, Polish Academy of Sciences (PL)
Ding B. - Donghua University (CN)
De Sio L. - Sapienza University of Rome (IT)
Pierini F. - IPPT PAN
140p.
3.  Nakielski P., Pawłowska S., Rinoldi C., Ziai Y., De Sio L., Urbanek O., Zembrzycki K., Pruchniewski M., Lanzi M., Salatelli E., Calogero A., Kowalewski T.A., Yarin A.L., Pierini F., Multifunctional platform based on electrospun nanofibers and plasmonic hydrogel: a smart nanostructured pillow for near-Infrared light-driven biomedical applications, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.0c13266, Vol.12, No.49, pp.54328-54342, 2020

Streszczenie:
Multifunctional nanomaterials with the ability torespond to near-infrared (NIR) light stimulation are vital for thedevelopment of highly efficient biomedical nanoplatforms with apolytherapeutic approach. Inspired by the mesoglea structure ofjellyfish bells, a biomimetic multifunctional nanostructured pillowwith fast photothermal responsiveness for NIR light-controlled on-demand drug delivery is developed. We fabricate a nanoplatformwith several hierarchical levels designed to generate a series ofcontrolled, rapid, and reversible cascade-like structural changesupon NIR light irradiation. The mechanical contraction of thenanostructured platform, resulting from the increase of temper-ature to 42°C due to plasmonic hydrogel−light interaction, causesa rapid expulsion of water from the inner structure, passing through an electrospun membrane anchored onto the hydrogel core. Themutual effects of the rise in temperature and waterflow stimulate the release of molecules from the nanofibers. To expand thepotential applications of the biomimetic platform, the photothermal responsiveness to reach the typical temperature level forperforming photothermal therapy (PTT) is designed. The on-demand drug model penetration into pig tissue demonstrates theefficiency of the nanostructured platform in the rapid and controlled release of molecules, while the high biocompatibility confirmsthe pillow potential for biomedical applications based on the NIR light-driven multitherapy strategy.

Słowa kluczowe:
bioinspired materials, NIR-light responsive nanomaterials, multifunctional platforms, electrospun nanofibers, plasmonic hydrogel, photothermal-based polytherapy, on-demand drug delivery

Afiliacje autorów:
Nakielski P. - IPPT PAN
Pawłowska S. - IPPT PAN
Rinoldi C. - IPPT PAN
Ziai Y. - IPPT PAN
De Sio L. - Sapienza University of Rome (IT)
Urbanek O. - IPPT PAN
Zembrzycki K. - IPPT PAN
Pruchniewski M. - inna afiliacja
Lanzi M. - University of Bologna (IT)
Salatelli E. - University of Bologna (IT)
Calogero A. - Sapienza University of Rome (IT)
Kowalewski T.A. - IPPT PAN
Yarin A.L. - Technion - Israel Institute of Technology (IL)
Pierini F. - IPPT PAN
200p.

Abstrakty konferencyjne
1.  Pierini F., Nakielski P., Pawłowska S., Rinoldi C., Ziai Y., Urbanek-Świderska O., De Sio L., Calogero A., Lanzi M., Zembrzycki K., Pruchniewski M., Salatelli E., Kowalewski T.A., Yarin A., Nature-inspired smart drug delivery platforms based on electrospun nanofibers and plasmonic hydrogels for near-infrared light-controlled polytherapy, Polymer Connect, Polymer Science and Composite Materials Conference, 2020-02-26/02-28, LISBON (PT), pp.7, 2020

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024