1. |
Jarząbek D. M., Włoczewski M.♦, Milczarek M., Jenczyk P., Takesue N.♦, Golasiński K.♦, Pieczyska E. A., Deformation Mechanisms of (100) and (110) Single-Crystal BCC Gum Metal Studied by Nanoindentation and Micropillar Compression,
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, ISSN: 1073-5623, DOI: 10.1007/s11661-024-07605-3, pp.1-11, 2024Streszczenie: In this paper, small-scale testing techniques—nanoindentation and micropillar compression—were used to investigate the deformation mechanisms, size effects, and strain rate sensitivity of (100) and (110) single-crystal Gum Metal at the micro/nanoscale. It was observed that the (100) orientation exhibits a significant size effect, resulting in hardness values ranging from 1 to 5 GPa. Conversely, for the (110) orientation, this effect was weaker. Furthermore, the yield strength obtained from the micropillar compression tests was approximately 740 MPa for the (100) orientation and 650 MPa for the (110) orientation. The observed deformations were consistent with the established features of the deformation behavior of body-centered cubic (bcc) alloys: significant strain rate sensitivity with no depth dependence, pile-up patterns comparable to those reported in the literature, and shear along the {112}<111> slip directions. However, the investigated material also exhibited Gum Metal-like high ductility, a relatively low modulus of elasticity, and high yield strength, which distinguishes it from classic bcc alloys. Afiliacje autorów:
Jarząbek D. M. | - | IPPT PAN | Włoczewski M. | - | inna afiliacja | Milczarek M. | - | IPPT PAN | Jenczyk P. | - | IPPT PAN | Takesue N. | - | Fukuoka University (JP) | Golasiński K. | - | inna afiliacja | Pieczyska E. A. | - | IPPT PAN |
| | 200p. |
2. |
Mościcki T. P., Psiuk R., Jarząbek D. M., Ciemiorek-Bartkowska M.♦, Kulikowski K.♦, Jasiński J.♦, Włoczewski M.♦, Lewandowska-Szumieł M.♦, Effect of titanium and deposition parameters on microstructure and mechanical properties of W-Ti-B thin films deposited by High Power Impulse Magnetron Sputtering,
SURFACE AND COATINGS TECHNOLOGY, ISSN: 0257-8972, DOI: 10.1016/j.surfcoat.2024.130915, Vol.485, No.130915, pp.1-13, 2024Streszczenie: Tungsten diboride alloyed with transition metals provides an opportunity to obtain exceptional mechanical, physical, and chemical properties. We report a strategy for designing and synthesizing of superhard and low-compressible ceramic thin films with increased toughness and lowered residual stresses (σ < −0.9 GPa) deposited with high-power impulse magnetron sputtering (HiPIMS) from one target. The addition of 7–12 % titanium promotes additional strengthening mechanisms of the layers in one material, leading to the improvement of wear resistance compared to an alloyed WB2-z yet at even higher hardness 43.8 ± 2.1 GPa and nanoindentation toughness 4.9 ± 0.2 MPa√m. The compression of the micropillar shows that titanium addition changed the type of nanoindentation from cracking along the slip plane to bulging on the top of the pillar and next the crack initiation along column boundaries. The highest adhesion of the layers is obtained for addition of 7 % titanium and in all cases the wear has abrasive character. The controlled use of 200 μs pulses during synthesis with HiPIMS allows for an increase in the deposition rate and maintaining exceptional mechanical properties of the layers even at a substrate temperature of 300 °C. Słowa kluczowe: Ternary transition metal diboride thin films, Mechanical properties, HiPIMS magnetron sputtering, Wear resistance and adhesion Afiliacje autorów:
Mościcki T. P. | - | IPPT PAN | Psiuk R. | - | IPPT PAN | Jarząbek D. M. | - | IPPT PAN | Ciemiorek-Bartkowska M. | - | inna afiliacja | Kulikowski K. | - | inna afiliacja | Jasiński J. | - | inna afiliacja | Włoczewski M. | - | inna afiliacja | Lewandowska-Szumieł M. | - | inna afiliacja |
| | 100p. |
3. |
Krajewski M., Kaczmarek A., Tokarczyk M.♦, Lewińska S.♦, Włoczewski M.♦, Bochenek K., Jarząbek D., Mościcki T., Hoffman J., Ślawska-Waniewska A.♦, Laser-Assisted Growth of Fe3O4 Nanoparticle Films on Silicon Substrate in Open Air,
physica status solidi (a), ISSN: 1862-6319, DOI: 10.1002/pssa.202200786, No.2200786, pp.1-5, 2023Streszczenie: This work presents a growth of Fe3O4 nanoparticle films on silicon substrate. The iron oxide is deposited applying a pulsed laser deposition technique. The process is performed in open air in the absence and presence of external magnetic field. In fact, the morphologies of the obtained Fe3O4–Si samples are similar. The Fe3O4 nanoparticles are spherical with average diameters of 30 nm and are densely agglomerated on the Si substrate. The Fe3O4–Si material prepared in the absence of magnetic field has revealed more intense signals during X-ray diffraction and Raman measurements. The magnetic investigations indicate that the Fe3O4 nanoparticles are significantly coupled with the Si substrate and do not exhibit superparamagnetic behavior. Moreover, the Verwey transition is 98 K for both investigated Fe3O4–Si samples. Słowa kluczowe: Fe3O4 nanoparticles,magnetic materials,pulsed laser deposition Afiliacje autorów:
Krajewski M. | - | IPPT PAN | Kaczmarek A. | - | IPPT PAN | Tokarczyk M. | - | Uniwersytet Warszawski (PL) | Lewińska S. | - | Institute of Physics, Polish Academy of Sciences (PL) | Włoczewski M. | - | inna afiliacja | Bochenek K. | - | IPPT PAN | Jarząbek D. | - | IPPT PAN | Mościcki T. | - | IPPT PAN | Hoffman J. | - | IPPT PAN | Ślawska-Waniewska A. | - | inna afiliacja |
| | 70p. |