1. |
Kiełczyński P., Szymański P.♦, Szalewski M., Wieja K., Balcerzak A., Ptasznik S.♦, Application of Density Measurements for Discrimination and Evaluation of Chemical Composition of Different Types of Mechanically Separated Meat (MSM),
Molecules, ISSN: 1420-3049, DOI: 10.3390/molecules27217600, Vol.27, pp.1-13, 2022Streszczenie: At present, the problem of identifying and controlling different types of Mechanically
Separated Meat (MSM) is a very important practical issue in the meat industry. To address this
challenge, the authors propose a new, analytical method for the discrimination and characterization
of MSM that uses density measurements. The method proposed by the authors, in contrast to the analytical methods existing so far, is rapid, non-destructive, relatively simple and can be computerized.
The density measurements of meat samples were conducted with a modified pycnometric method.
Statistically significant (p < 0.01) differences were found in the evaluated mean values of density
for all investigated types of meat. Subsequently, the density measurements were correlated with
the physicochemical properties of meat samples. A high correlation coefficient was found between
the density of meat samples and the content of protein, sodium and fat. The authors have proven
that density measurements allow for rapid discrimination of various types of MSM, and can also be
effectively used to determine the chemical composition of MSM samples, e.g., the content of protein,
fat and sodium.
Słowa kluczowe: Meat density; Mechanically Separated Meat (MSM); protein content; fat content; Sodium (Na) content; Calcium content (Ca) Afiliacje autorów:
Kiełczyński P. | - | IPPT PAN | Szymański P. | - | inna afiliacja | Szalewski M. | - | IPPT PAN | Wieja K. | - | IPPT PAN | Balcerzak A. | - | IPPT PAN | Ptasznik S. | - | Air Force Institute of Technology (PL) |
| | 140p. |
2. |
Wieja K., Kiełczyński P., Szymański P.♦, Szalewski M.♦, Balcerzak A., Ptasznik S.♦, Identification and investigation of mechanically separated meat (MSM) with an innovative ultrasonic method,
Food Chemistry, ISSN: 0308-8146, DOI: 10.1016/j.foodchem.2020.128907, Vol.348, pp.128907-1-9, 2021Streszczenie: An innovative analytical ultrasonic method for identification and investigation of Mechanically Separated Meat (MSM) samples is presented. To this end, the ultrasonic wave velocity (f = 5 MHz) in the investigated meat samples was measured. The measured ultrasonic velocity ranged from 1553.4 to 1589.9 m/s. The investigations were performed for: 1) minced hand deboned chicken fillets, 2) low pressure MSM from chicken carcasses, 3) low pressure MSM from chicken collarbones, 4) high pressure MSM from chicken carcasses and 5) high pressure MSM from chicken collarbones. Statistically significant (p < 0.001) differences in the ultrasonic velocity were observed for each of investigated kinds of meat. High significant correlations were found between the ultrasonic velocity and the content of protein, fat, sodium and density of the investigated meat. The applicability of the developed ultrasonic method for identifying various kinds of meat and to determine the content of protein, fat, sodium and density was demonstrated. Słowa kluczowe: physicochemical parameters, mechanically separated meat, ultrasonic velocity, protein content, calcium content, fat content Afiliacje autorów:
Wieja K. | - | IPPT PAN | Kiełczyński P. | - | IPPT PAN | Szymański P. | - | inna afiliacja | Szalewski M. | - | inna afiliacja | Balcerzak A. | - | IPPT PAN | Ptasznik S. | - | Air Force Institute of Technology (PL) |
| | 200p. |
3. |
Balcerzak A., Kiełczyński P., Szalewski M.♦, Wieja K., SAW sensor with Langmuir-Blodgett layer for detection of benzene and its derivatives,
ARCHIVES OF ACOUSTICS, ISSN: 0137-5075, DOI: 10.24425/aoa.2021.136557, Vol.46, No.1, pp.25-30, 2021Streszczenie: Vapors of benzene and its derivatives are harmful and toxic for human beings and natural environment. Their detection has fundamental importance. For this purpose authors propose surface acoustic wave (SAW) sensor with skeletonized layer deposited by Langmuir-Blodgett (L-B) method. This layer was obtained by depositing a binary equimolar mixture of 5-[[1,3-dioxo-3-[4-(1-oxooctadecyl) phenyl]propyl]amino]–1,3–benzenedicarboxylic acid with cetylamine. The skeletonized sensor layer has been obtained by removing cetylamine. Response of this sensor depends mainly of the electrical dipole momentum of molecule. Among the tested compounds, benzene has a zero dipole moment and gives the smallest sensor response, and nitrobenzene has the largest dipole moment and the sensor reacts most strongly to its vapor. Słowa kluczowe: SAW sensor, Langmuir-Blodget layer, vapors, benzene, benzene derivatives Afiliacje autorów:
Balcerzak A. | - | IPPT PAN | Kiełczyński P. | - | IPPT PAN | Szalewski M. | - | inna afiliacja | Wieja K. | - | IPPT PAN |
| | 100p. |
4. |
Kiełczyński P., Szalewski M.♦, Balcerzak A., Wieja K., New theoretical model for mass sensitivity of Love wave sensors,
ARCHIVES OF ACOUSTICS, ISSN: 0137-5075, DOI: 10.24425/aoa.2021.136556, Vol.46, No.1, pp.17-24, 2021Streszczenie: In this work we analyse basic characteristics of Love wave sensors implemented in waveguide structures composed of a lossy viscoelastic surface layer deposited on a lossless elastic substrate. It has to be noted that Love wave sensors working at ultrasonic frequencies have the highest mass density sensitivity S among all known ultrasonic sensors, such as QCM, Lamb wave or Rayleigh wave sensors. In this paper we have established an exact analytical formula for the mass density sensitivity S of the Love wave sensors in the form of an explicit algebraic expression. Subsequently, using this developed analytical formula, we compared theoretically the mass density sensitivity S for various Love wave waveguide structures, such as: (1) lossy PMMA surface layer on lossless Quartz substrate and (2) lossy PMMA on lossless Diamond substrate. The performed analysis shows that the mass density sensitivity S (real and imaginary part) for a sensor with a structure PMMA on Diamond is five times higher than that of a PMMA on Quartz structure. It was found that the mass density sensitivity S for Love wave sensors increases with the increase of the ratio: bulk shear wave velocity in the substrate to bulk shear wave velocity in the surface layer. Słowa kluczowe: Love wave sensors, mass sensitivity, complex dispersion equation, viscoelastic layers Afiliacje autorów:
Kiełczyński P. | - | IPPT PAN | Szalewski M. | - | inna afiliacja | Balcerzak A. | - | IPPT PAN | Wieja K. | - | IPPT PAN |
| | 100p. |
5. |
Kiełczyński P., Szalewski M.♦, Balcerzak A., Wieja K., Dispersion curves of Love waves in elastic waveguides loaded with a Newtonian liquid layer of finite thickness,
ARCHIVES OF ACOUSTICS, ISSN: 0137-5075, DOI: 10.24425/aoa.2019.129738, Vol.45, No.1, pp.19-27, 2020Streszczenie: In this paper, the authors analyse the propagation of surface Love waves in an elastic layered waveguide (elastic guiding layer deposited on an elastic substrate) covered on its surface with a Newtonian liquid layer of finite thickness. By solving the equations of motion in the constituent regions (elastic substrate, elastic surface layer and Newtonian liquid) and imposing the appropriate boundary conditions, the authors established an analytical form of the complex dispersion equation for Love surface waves. Further, decomposition of the complex dispersion equation into its real and imaginary part, enabled for evaluation of the phase velocity and attenuation dispersion curves of the Love wave. Subsequently, the influence of the finite thickness of a Newtonian liquid on the dispersion curves was evaluated. Theoretical (numerical) analysis shows that when the thickness of the Newtonian liquid layer exceeds approximately four penetration depths 4δ of the wave in a Newtonian liquid, then this Newtonian liquid layer can be regarded as a semi-infinite half-space. The results obtained in this paper can be important in the design and optimization of ultrasonic Love wave sensors such as: biosensors, chemosensors and viscosity sensors. Love wave viscosity sensors can be used to assess the viscosity of various liquids, e.g. liquid polymers. Słowa kluczowe: Love waves, ultrasonic sensors, Newtonian liquid, penetration depth, biosensors, chemosensors, viscosity sensors Afiliacje autorów:
Kiełczyński P. | - | IPPT PAN | Szalewski M. | - | inna afiliacja | Balcerzak A. | - | IPPT PAN | Wieja K. | - | IPPT PAN |
| | 70p. |
6. |
Kiełczyński P., Szalewski M.♦, Balcerzak A., Wieja K., Impact of losses on Love wave propagation in multilayered composite structures loaded with a Newtonian liquid,
JOURNAL OF VIBRATION AND CONTROL, ISSN: 1077-5463, DOI: 10.1177/1077546320916041, Vol.26, No.23-24, pp.2221-2229, 2020Streszczenie: In this study, we analyze theoretically and numerically the properties of Love surface waves propagating in lossy multilayered composite waveguides, loaded on the upper surface with a Newtonian liquid. The propagation of Love surface waves was formulated in terms of a direct Sturm–Liouville problem. An analytical form of the complex dispersion equation of the Love surface wave was derived using the Thomson–Haskell transfer matrix method. By separating the complex dispersion equation into its real and imaginary parts, we obtained a set of two nonlinear algebraic equations, which were subsequently solved numerically. The effect of various physical parameters of the lossy viscoelastic waveguide on the velocity and attenuation of the Love surface wave was then analyzed numerically. It was found that because of the presence of losses in the analyzed waveguide, Love surface waves displayed a number of new original phenomena, such as resonant-like maxima in attenuation as a function of thicknesses h1 of the first viscoelastic surface layer and thickness h2 of the second elastic surface layer. These phenomena are completely absent in lossless waveguides. Słowa kluczowe: lossy waveguides, nondestructive testing of polymeric layered structures, Love surface waves, viscoelastic materials Afiliacje autorów:
Kiełczyński P. | - | IPPT PAN | Szalewski M. | - | inna afiliacja | Balcerzak A. | - | IPPT PAN | Wieja K. | - | IPPT PAN |
| | 70p. |
7. |
Kiełczyński P., Ptasznik S.♦, Szalewski M.♦, Balcerzak A., Wieja K., Rostocki A.J.♦, Application of ultrasonic methods for evaluation of high-pressure physicochemical parameters of liquids,
ARCHIVES OF ACOUSTICS, ISSN: 0137-5075, DOI: 10.24425/aoa.2019.128496, Vol.44, No.2, pp.329-337, 2019Streszczenie: An emerging ultrasonic technology aims to control high-pressure industrial processes that use liquids at pressures up to 800 MPa. To control these processes it is necessary to know precisely physicochemical properties of the processed liquid (e.g., Camelina sativa oil) in the high-pressure range. In recent years, Camelina sativa oil gained a significant interest in food and biofuel industries. Unfortunately, only a very few data characterizing the high-pressure behavior of Camelina sativa oil is available. The aim of this paper is to investigate high pressure physicochemical properties of liquids on the example of Camelina sativa oil, using efficient ultrasonic techniques, i.e., speed of sound measurements supported by parallel measurements of density. It is worth noting that conventional low-pressure methods of measuring physicochemical properties of liquids fail at high pressures. The time of flight (TOF) between the two selected ultrasonic impulses was evaluated with a cross-correlation method. TOF measurements enabled for determination of the speed of sound with very high precision (of the order of picoseconds). Ultrasonic velocity and density measurements were performed for pressures 0.1–660 MPa, and temperatures 3–30 °C. Isotherms of acoustic impedance Za, surface tension σ and thermal conductivity k were subsequently evaluated. These physicochemical parameters of Camelina sativa oil are mainly influenced by changes in the pressure p, i.e., they increase about two times when the pressure increases from atmospheric pressure (0.1 MPa) to 660 MPa at 30 °C. The results obtained in this study are novel and can be applied in food,and chemical industries. Słowa kluczowe: ultrasonic methods, speed of sound, acoustic impedance, surface tension, thermal conductivity, physicochemical properties Afiliacje autorów:
Kiełczyński P. | - | IPPT PAN | Ptasznik S. | - | Air Force Institute of Technology (PL) | Szalewski M. | - | inna afiliacja | Balcerzak A. | - | IPPT PAN | Wieja K. | - | IPPT PAN | Rostocki A.J. | - | Politechnika Warszawska (PL) |
| | 70p. |
8. |
Kiełczyński P., Szalewski M.♦, Balcerzak A., Wieja K., Rostocki A.♦, Ptasznik S.♦, Evaluation of High-Pressure Thermophysical Parameters of the Diacylglycerol (DAG) Oil Using Ultrasonic Waves,
Food and Bioprocess Technology, ISSN: 1935-5130, DOI: 10.1007/s11947-016-1827-6, Vol.10, No.2, pp.358-369, 2017Streszczenie: Modeling of high-pressure technological processes in the food industry requires knowledge of thermophysical parameters of processed foodstuffs in a broad range of pressures and temperatures. However, the high-pressure thermophysical parameters of foodstuffs are very rarely published in the literature. Therefore, further research is necessary to achieve a deeper insight into the biophysical and thermophysical phenomena under pressure to provide better control of technological processes and optimize the effects of pressure. The essential goal of this work is to evaluate the impact of high pressure and temperature on the thermophysical parameters of liquid foodstuffs on the example of diacylglycerol (DAG) oil (which attracted recently a considerable attention from research and industrial communities due to its remarkable benefits for health), using ultrasonic wave velocity and density measurements. Isotherms of adiabatic and isothermal compressibility, isobaric thermal expansion coefficient, internal pressure, and thermal pressure coefficient versus pressure were evaluated, based on the measurement of the compressional ultrasonic wave velocity and density of DAG oil at high pressures (up to 500 MPa) and at various temperatures. The adiabatic compressibility is affected mostly by the changes of pressure, i.e., it grows about four times when the pressure increases from the atmospheric pressure (0.1 MPa) to 400 MPa at a temperature of 50 °C. By contrast, the internal pressure is a pronounced function of the temperature, i.e., it increases six times when the temperature rises from 20 to 50 °C at a pressure of a 200 MPa. To perform numerical calculations, it was convenient to introduce a Tammann–Tait type equation of state to approximate the measured density isotherms of the investigated DAG oil. The results obtained in this paper can be applied in modeling and optimization of high-pressure technological processes and processing of foodstuffs. Evaluation of high-pressure isotherms of the considered thermophysical parameters of the DAG oil is an original authors' contribution to the state-of-the-art. Słowa kluczowe: high-pressure food processing, diacylglycerols, thermophysical parameters, isothermal compressibility, isobaric thermal expansion coefficient, ultrasonic methods Afiliacje autorów:
Kiełczyński P. | - | IPPT PAN | Szalewski M. | - | inna afiliacja | Balcerzak A. | - | IPPT PAN | Wieja K. | - | IPPT PAN | Rostocki A. | - | Politechnika Warszawska (PL) | Ptasznik S. | - | Air Force Institute of Technology (PL) |
| | 50p. |
9. |
Kiełczyński P., Ptasznik S.♦, Szalewski M.♦, Balcerzak A., Wieja K., Rostocki A.J.♦, Thermophysical properties of rapeseed oil methyl esters (RME) at high pressures and various temperatures evaluated by ultrasonic methods,
Biomass and Bioenergy, ISSN: 0961-9534, DOI: 10.1016/j.biombioe.2017.09.015, Vol.107, pp.113-121, 2017Streszczenie: Investigation of the high-pressure thermophysical properties of biofuels, e.g., bulk modulus, Surface tension, and viscosity is of paramount importance in fuel injection systems in diesel engines. Another crucial and dangerous phenomenon that may occur in biofuels at high pressures is phase transition (solidification), which can drastically increase the viscosity of the biofuel. This effect may hamper proper operation of the engine, especially under cold-start conditions. Unfortunately, the availability of highpressure thermophysical properties of biofuels is still limited. The goal of this paper is to investigate the impact of high pressures on thermophysical properties of biofuels on the example of rapeseed fatty acid methyl esters (RME) in a wide range of pressures (0:1 to 250 MPa) and temperatures (5 to 20 _C). To this end we employed innovative ultrasonic techniques, i.e., the Bleustein-Gulyaev surface acoustic waves for measuring RME viscosity, and ultrasonic bulk compressional waves for measuring sound velocity in RME and consequently evaluating RME thermophysical parameters, e.g., bulk modulus and surface tension. The viscosity of the measured RME displayed an abrupt increase at pressures: 260 MPa (t Ľ 20 _C), 230 MPa (t Ľ 15 _C), 190 MPa (t Ľ 10 _C), and 130 MPa (t Ľ 5 _C). Evidently it was a signature of the phase transition (solidification) occurring in the RME. The discovered high viscosity high-pressure phase in RME can be very detrimental for operation of modern common rail Diesel engines. Therefore, the results of research presented in this paper should be interesting for engineers and designers working with modern common rail Diesel engines using biofuels. Słowa kluczowe: Biofuels, Methyl esters, Phase transitions, Viscosity, Speed of sound, Ultrasonic methods, High pressure Afiliacje autorów:
Kiełczyński P. | - | IPPT PAN | Ptasznik S. | - | Air Force Institute of Technology (PL) | Szalewski M. | - | inna afiliacja | Balcerzak A. | - | IPPT PAN | Wieja K. | - | IPPT PAN | Rostocki A.J. | - | Politechnika Warszawska (PL) |
| | 35p. |
10. |
Kiełczyński P., Szalewski M., Balcerzak A., Wieja K., Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials,
Ultrasonics, ISSN: 0041-624X, DOI: 10.1016/j.ultras.2015.10.001, Vol.65, pp.220-227, 2016Streszczenie: This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm–Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method.
The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices. Słowa kluczowe: Ultrasonic Love waves, Functionally graded materials, Profiles of elastic constants, Direct Sturm–Liouville Problem, Group velocity Afiliacje autorów:
Kiełczyński P. | - | IPPT PAN | Szalewski M. | - | IPPT PAN | Balcerzak A. | - | IPPT PAN | Wieja K. | - | IPPT PAN |
| | 30p. |
11. |
Kiełczyński P., Szalewski M., Balcerzak A., Wieja K., Inverse Method for Determining Profiles of Elastic Parameters in the Functionally Graded Materials using Love Waves,
ACTA ACUSTICA UNITED WITH ACUSTICA, ISSN: 1610-1928, DOI: 10.3813/AAA.918961, Vol.102, pp.428-435, 2016Streszczenie: This paper presents the use of SH (Shear Horizontal) surface Love waves to determine the distributions of elastic parameters in nonhomogeneous Functionally Graded Materials. The advantage of Love waves applied to investigate the elastic properties of materials is that the Love wave energy (in contrast to the other types of waves, e.g., plate Lamb waves) is concentrated in the vicinity of the surface layer. The penetration depth of the SH surface Love waves depends on the frequency. Therefore, Love waves are particularly suitable for investigating the profiles of the mechanical properties in nonhomogeneous Graded Materials. Direct Problem (Direct Sturm-Liouville Problem) that describes the propagation of Love waves in nonhomogeneous graded materials has been formulated and solved numerically by applying the Transfer Matrix Method. The Inverse Procedure (Inverse Sturm-Liouville Problem) for determining the distribution of elastic properties versus depth in the nonhomogeneous materials has been developed. Love wave dispersion curves in nonhomogeneous graded materials were evaluated numerically (synthetic data). Using the evaluated dispersion curves of Love waves and a developed Inverse Procedure the distributions of elastic shear coefficient as a function of depth (distance from the surface of the material into the bulk) in a heterogeneous surface layer deposited on a homogeneous substrate have been evaluated. Power type profiles (i.e., root square, linear and quadratic) of the shear elastic coefficient in the surface layer were considered. The results of this study can be useful in the investigation of elastic properties of Graded Materials in electronics as well as in geophysics and seismology. Słowa kluczowe: Love waves, Inverse Methods, Functionally Graded Materials, Elastic parameters, Sturm-Liouville Problem Afiliacje autorów:
Kiełczyński P. | - | IPPT PAN | Szalewski M. | - | IPPT PAN | Balcerzak A. | - | IPPT PAN | Wieja K. | - | IPPT PAN |
| | 25p. |
12. |
Kiełczyński P., Szalewski M., Balcerzak A., Wieja K., Rostocki A.J.♦, Siegoczyński R.M.♦, Ultrasonic Evaluation of Thermodynamic Parameters of Liquids Under High Pressure,
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, ISSN: 0885-3010, DOI: 10.1109/TUFFC.2015.007053, Vol.62, No.6, pp.1122-1131, 2015Streszczenie: In many technological processes (e.g., in the chemical, petrochemical, food, and plastics industries), liquids are subjected to high pressures and temperatures. Therefore, knowledge of their thermodynamic properties is essential for understanding, design, and control of the process technology. Direct evaluation of the thermodynamic parameters of liquids under high pressure, using conventional methods, is very difficult. Therefore, the application of these methods in industrial conditions, particularly in on-line control of the technological parameters of liquids, is practically impossible. Ultrasonic methods (e.g., sound speed measurements) are very suitable for this purpose because of their simplicity and accuracy. The sound velocity is closely related to numerous thermodynamic properties of liquids. The objective of this paper is to address the influence of temperature and pressure on the thermodynamic parameters of liquids, using the example of diacylglycerol (DAG) oil, employing ultrasonic methods. In this paper, we present ultrasonic velocity and density measurements (performed by the authors) in DAG oil over a range of pressures and temperatures. On the basis of experimental results (the sound velocity and liquid density versus pressure and temperature) a series of DAG oil thermodynamic parameters such as specific heat ratio, intermolecular free path length, Van der Waals constant b, surface tension, and effective Debye temperature were evaluated as functions of pressure and temperature. Słowa kluczowe: Thermodynamical properties of liquid, High pressure food processing, ultrasonic methods, sound velocity, surface tension Afiliacje autorów:
Kiełczyński P. | - | IPPT PAN | Szalewski M. | - | IPPT PAN | Balcerzak A. | - | IPPT PAN | Wieja K. | - | IPPT PAN | Rostocki A.J. | - | Politechnika Warszawska (PL) | Siegoczyński R.M. | - | Politechnika Warszawska (PL) |
| | 30p. |
13. |
Kiełczyński P., Szalewski M., Balcerzak A., Wieja K., Group and Phase Velocity of Love Waves Propagating in Elastic Functionally Graded Materials,
ARCHIVES OF ACOUSTICS, ISSN: 0137-5075, DOI: 10.1515/aoa-2015-0030, Vol.40, No.2, pp.273-281, 2015Streszczenie: This paper presents a theoretical study of the propagation behaviour of surface Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in acoustics. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). Two Love wave waveguide structures are analyzed: 1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and 2) a semi-infinite nonhomogeneous elastic half-space. The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved 1) analytically in the case of the step profile, exponential profile and 1cosh2 type profile, and 2) numerically in the case of the power type profiles (i.e. linear and quadratic), by using two numerical methods: i.e. a) Finite Difference Method, and b) Haskell-Thompson Transfer Matrix Method.
The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The results obtained in this paper can give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials. Słowa kluczowe: surface Love waves, group velocity, phase velocity, functionally graded materials, profiles of elastic constants, direct Sturm-Liouville problem Afiliacje autorów:
Kiełczyński P. | - | IPPT PAN | Szalewski M. | - | IPPT PAN | Balcerzak A. | - | IPPT PAN | Wieja K. | - | IPPT PAN |
| | 15p. |
14. |
Kiełczyński P., Szalewski M., Balcerzak A., Wieja K., Rostocki A.J.♦, Siegoczyński R.M.♦, Ptasznik S.♦, Application of ultrasonic wave celerity measurement for evaluation of physicochemical properties of olive oil at high pressure and various temperatures,
LWT-FOOD SCIENCE AND TECHNOLOGY, ISSN: 0023-6438, DOI: 10.1016/j.lwt.2014.01.027, Vol.57, pp.253-259, 2014Streszczenie: High-pressure processing is a powerful technology for food preservation. The knowledge of foods properties in the high-pressure range is important to develop and optimize such processes by means of mathematical modeling and simulation. Ultrasonic methods are rapid, non-invasive and can be used to characterize foods like edible oils (e.g., composition, purity, and quality assessment). In this paper, they were applied for the investigation of physicochemical properties of olive oil at high pressure at different temperatures. The sound wave velocity was measured by the pulse-transmission method and the corresponding oil density was additionally determined from the monitoring of sample volume change. Measurements were conducted in the pressure range up to 600 MPa, for temperatures from 20 to 50°C. Intermolecular free length, isothermal and adiabatic compressibility versus pressure were calculated using measured sound speed and density isotherms. Discontinuities in the measured isotherms of sound speed and density versus pressure indicate the presence of liquid-to-solid phase transitions. The kinetics of the liquid-to-solid phase transition was also investigated. The transformation times of olive oil augment with increasing temperature. This study can be broadened to other liquid foodstuffs to investigate the influence of temperature on their physicochemical properties at high pressure. Słowa kluczowe: Physicochemical properties, Intermolecular free length, Ultrasonic velocity, High-pressure food processing, Olive oils Afiliacje autorów:
Kiełczyński P. | - | IPPT PAN | Szalewski M. | - | IPPT PAN | Balcerzak A. | - | IPPT PAN | Wieja K. | - | IPPT PAN | Rostocki A.J. | - | Politechnika Warszawska (PL) | Siegoczyński R.M. | - | Politechnika Warszawska (PL) | Ptasznik S. | - | Air Force Institute of Technology (PL) |
| | 35p. |
15. |
Kiełczyński P., Szalewski M., Balcerzak A., Wieja K., Malanowski A.♦, Kościesza R.♦, Tarakowski R.♦, Rostocki A.J.♦, Siegoczyński R.M.♦, Determination of physicochemical properties of diacylglycerol oil at high pressure by means of ultrasonic methods,
Ultrasonics, ISSN: 0041-624X, DOI: 10.1016/j.ultras.2014.06.013, Vol.54, No.8, pp.2134-2140, 2014Streszczenie: The purpose of the paper is to address, using ultrasonic methods, the impact of temperature and pressure on the physicochemical properties of liquids on the example of diacylglycerol (DAG) oil. The paper presents measurements of sound velocity, density and volume of DAG oil sample in the pressure range from atmospheric pressure up to 0.6 GPa and at temperatures ranging from 20 to 50°C.
Sound speed measurements were performed in an ultrasonic setup with a DAG oil sample located in the high-pressure chamber. An ultrasonic method that uses cross-correlation method to determine the time-of-flight of the ultrasonic pulses through the liquid was employed to measure the sound velocity in DAG oil. This method is fast and reliable tool for measuring sound velocity. The DAG oil density at high pressure was determined from the monitoring of sample volume change. The adiabatic compressibility and isothermal compressibility have been calculated on the basis of experimental data. Discontinuities in isotherms of the sound speed versus pressure point to the existence of phase transitions in DAG oil. The ultrasonic method presented in this study can be applied to investigate the physicochemical parameters of other liquids not only edible oils. Słowa kluczowe: Ultrasonic methods, Sound velocity, Phase transitions, High pressure food processing, Physicochemical parameters Afiliacje autorów:
Kiełczyński P. | - | IPPT PAN | Szalewski M. | - | IPPT PAN | Balcerzak A. | - | IPPT PAN | Wieja K. | - | IPPT PAN | Malanowski A. | - | inna afiliacja | Kościesza R. | - | inna afiliacja | Tarakowski R. | - | inna afiliacja | Rostocki A.J. | - | Politechnika Warszawska (PL) | Siegoczyński R.M. | - | Politechnika Warszawska (PL) |
| | 30p. |
16. |
Kiełczyński P., Szalewski M., Balcerzak A., Wieja K., Rostocki A.J.♦, Siegoczyński R.M.♦, Thermodynamic Method for Measuring the B/A Nonlinear Parameter Under High Pressure,
ENGINEERING TRANSACTIONS (ROZPRAWY INŻYNIERSKIE), ISSN: 0867-888X, Vol.62, No.1, pp.5-15, 2014Streszczenie: The nonlinearity parameter B/A is a measure of the nonlinearity of the equation of state for a fluid. The nonlinearity parameter B/A is a physical parameter often used in acoustics, from underwater acoustics to biology and medicine. It can provide information about structural properties of the medium, internal pressure and inter-molecular spacing. The thermodynamic method has been applied for determination of B/A parameter in diacylglycerol (DAG) oil as a function of pressure at various temperatures. Isotherms of the density and phase velocity of longitudinal ultrasonic wave as a function of pressure have been measured. Using the thermo- dynamic method along with measured isotherms of sound speed and density, the nonlinearity parameter B/A (for DAG oil) was evaluated as a function of pressure (up to 220 MPa) at various temperatures ranging from 20 to 50◦C.
Słowa kluczowe: Nonlinearity parameter B/A, thermodynamic method, high pressure, longitudinal ultrasonic wave velocity Afiliacje autorów:
Kiełczyński P. | - | IPPT PAN | Szalewski M. | - | IPPT PAN | Balcerzak A. | - | IPPT PAN | Wieja K. | - | IPPT PAN | Rostocki A.J. | - | Politechnika Warszawska (PL) | Siegoczyński R.M. | - | Politechnika Warszawska (PL) |
| | 7p. |