1. |
Hoffman J., Mróz W.♦, Prokopiuk A.♦, Szymański Z., Plasma plume induced during laser ablation of graphite,
APPLIED PHYSICS A-MATERIALS SCIENCE AND PROCESSING, ISSN: 0947-8396, DOI: 10.1007/s00339-008-4559-2, Vol.92, pp.921-926, 2008Abstract: The plasma plume induced during ArF laser ablation of a graphite target is studied. Velocities of the plasma expansion front are determined by the optical time of flight method. Mass center velocities of the emitting atoms and ions are constant and amount to 1.7×104 and 3.8×104 m s−1, respectively. Higher velocities of ions result probably from their acceleration in electrostatic field created by electron emission prior to ion emission. The emission spectroscopy of the plasma plume is used to determine the electron densities and temperatures at various distances from the target. The electron density is determined from the Stark broadening of the Ca II and Ca I lines. It reaches a maximum of ∼9.5×1023 m−3 30 ns from the beginning of the laser pulse at the distance of 1.2 mm from the target and next decreases to ∼1.2×1022 m−3 at the distance of 7.6 mm from the target. The electron temperature is determined from the ratio of intensities of ionic and atomic lines. Close to the target the electron temperature of ∼30 kK is found but it decreases quickly to 11.5 kK 4 mm from the target. Affiliations:
Hoffman J. | - | IPPT PAN | Mróz W. | - | Military University of Technology (PL) | Prokopiuk A. | - | other affiliation | Szymański Z. | - | IPPT PAN |
| |