Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Agata Kamińska

Institute of Physics, Polish Academy of Sciences (PL)

Recent publications
1.  Teisseyre H., Kaminska A., Birner S., Young T.D., Suchocki A., Kozanecki A., Influence of hydrostatic pressure on the built-in electric field in ZnO/ZnMgO quantum wells, JOURNAL OF APPLIED PHYSICS, ISSN: 0021-8979, DOI: 10.1063/1.4953251, Vol.119, pp.215702-1-8, 2016

Abstract:
We used high hydrostatic pressure to perform photoluminescence measurements on polar ZnO/ZnMgO quantum well structures. Our structure oriented along the c-direction (polar direction) was grown by plasma-assisted molecular beam epitaxy on a-plane sapphire. Due to the intrinsic electric field, which exists in polar wurtzite structure at ambient pressure, we observed a red shift of the emission related to the quantum-confined Stark effect. In the high hydrostatic pressure experiment, we observed a strong decrease of the quantum well pressure coefficients with increased thickness of the quantum wells. Generally, a narrower quantum well gave a higher pressure coefficient, closer to the band-gap pressure coefficient of bulk material 20 meV/GPa for ZnO, while for wider quantum wells it is much lower. We observed a pressure coefficient of 19.4 meV/GPa for a 1.5 nm quantum well, while for an 8 nm quantum well the pressure coefficient was equal to 8.9 meV/GPa only. This is explained by taking into account the pressure-induced increase of the strain in our structure. The strain was calculated taking in to account that in-plane strain is not equal (due to fact that we used a-plane sapphire as a substrate) and the potential distribution in the structure was calculated self-consistently. The pressure induced increase of the built-in electric field is the same for all thicknesses of quantum wells, but becomes more pronounced for thicker quantum wells due to the quantum confined Stark effect lowering the pressure coefficients.

Keywords:
Piezoelectric fields, Quantum wells, Polarization, Zinc oxide films, High pressure

Affiliations:
Teisseyre H. - Institute of Physics, Polish Academy of Sciences (PL)
Kaminska A. - Institute of Physics, Polish Academy of Sciences (PL)
Birner S. - nextnano GmbH (DE)
Young T.D. - IPPT PAN
Suchocki A. - Institute of Physics, Polish Academy of Sciences (PL)
Kozanecki A. - other affiliation

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024