Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Antonella Sola


Recent publications
1.  Ziai Y., Zargarian S. S., Rinoldi C., Nakielski P., Sola A., Lanzi M., Truong Yen B., Pierini F., Conducting polymer-based nanostructured materials for brain–machine interfaces, WIREs Nanomedicine and Nanobiotechnology, ISSN: 1939-0041, DOI: 10.1002/wnan.1895, Vol.15, No.5, pp.e1895-1-33, 2023

Abstract:
As scientists discovered that raw neurological signals could translate into bioelectric information, brain–machine interfaces (BMI) for experimental and clinical studies have experienced massive growth. Developing suitable materials for bioelectronic devices to be used for real-time recording and data digitalizing has three important necessitates which should be covered. Biocompatibility, electrical conductivity, and having mechanical properties similar to soft brain tissue to decrease mechanical mismatch should be adopted for all materials. In this review, inorganic nanoparticles and intrinsically conducting polymers are discussed to impart electrical conductivity to systems, where soft materials such as hydrogels can offer reliable mechanical properties and a biocompatible substrate. Interpenetrating hydrogel networks offer more mechanical stability and provide a path for incorporating polymers with desired properties into one strong network. Promising fabrication methods, like electrospinning and additive manufacturing, allow scientists to customize designs for each application and reach the maximum potential for the system. In the near future, it is desired to fabricate biohybrid conducting polymer-based interfaces loaded with cells, giving the opportunity for simultaneous stimulation and regeneration. Developing multi-modal BMIs, Using artificial intelligence and machine learning to design advanced materials are among the future goals for this field.

Keywords:
3D printing,brain–machine interface,conductive hydrogels,electrospinning,neural recording

Affiliations:
Ziai Y. - IPPT PAN
Zargarian S. S. - IPPT PAN
Rinoldi C. - IPPT PAN
Nakielski P. - IPPT PAN
Sola A. - other affiliation
Lanzi M. - University of Bologna (IT)
Truong Yen B. - other affiliation
Pierini F. - IPPT PAN

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024