1. |
Ahsani S.♦, Claeys C.♦, Zieliński T.G., Jankowski Ł., Scarpa F.♦, Desmet W.♦, Deckers E.♦, Sound absorption enhancement in poro-elastic materials in the viscous regime using a mass–spring effect,
JOURNAL OF SOUND AND VIBRATION, ISSN: 0022-460X, DOI: 10.1016/j.jsv.2021.116353, Vol.511, pp.116353-1-16, 2021Abstract: This paper investigates the mechanisms that can be used to enhance the absorption performance of poro-elastic materials in the viscous regime. It is shown that by adding small inclusions in a poro-elastic foam layer, a mass–spring effect can be introduced. If the poro-elastic material has relatively high viscous losses in the frequency range of interest, the mass–spring effect can enhance the sound absorption of the foam by introducing an additional mode in the frame and increasing its out-of-phase movement with respect to the fluid part. Moreover, different effects such as the trapped mode effect, the modified-mode effect, and the mass–spring effect are differentiated by decomposing the absorption coefficient in terms of the three energy dissipation mechanisms (viscous, thermal, and structural losses) in poro-elastic materials. The physical and geometrical parameters that can amplify or decrease the mass–spring effect are discussed. Additionally, the influence of the incidence angle on the mass–spring effect is evaluated and a discussion on tuning the inclusion to different target frequencies is given. Keywords: meta-poro-elastic material, Biot–Allard poroelastic model, mass–spring effect, viscous regime Affiliations:
Ahsani S. | - | Katholieke Universiteit Leuven (BE) | Claeys C. | - | Katholieke Universiteit Leuven (BE) | Zieliński T.G. | - | IPPT PAN | Jankowski Ł. | - | IPPT PAN | Scarpa F. | - | University of Bristol (GB) | Desmet W. | - | Katholieke Universiteit Leuven (BE) | Deckers E. | - | Katholieke Universiteit Leuven (BE) |
| |
2. |
Zieliński T.G., Opiela K.C., Pawłowski P., Dauchez N.♦, Boutin T.♦, Kennedy J.♦, Trimble D.♦, Rice H.♦, Van Damme B.♦, Hannema G.♦, Wróbel R.♦, Kim S.♦, Ghaffari Mosanenzadeh S.♦, Fang N.X.♦, Yang J.♦, Briere de La Hosseraye B.♦, Hornikx M.C.J.♦, Salze E.♦, Galland M.-A.♦, Boonen R.♦, Carvalho de Sousa A.♦, Deckers E.♦, Gaborit M.♦, Groby J.-P.♦, Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: round robin study,
Additive Manufacturing, ISSN: 2214-8604, DOI: 10.1016/j.addma.2020.101564, Vol.36, pp.101564-1-24, 2020Abstract: The purpose of this work is to check if additive manufacturing technologies are suitable for reproducing porous samples designed for sound absorption. The work is an inter-laboratory test, in which the production of samples and their acoustic measurements are carried out independently by different laboratories, sharing only the same geometry codes describing agreed periodic cellular designs. Different additive manufacturing technologies and equipment are used to make samples. Although most of the results obtained from measurements performed on samples with the same cellular design are very close, it is shown that some discrepancies are due to shape and surface imperfections, or microporosity, induced by the manufacturing process. The proposed periodic cellular designs can be easily reproduced and are suitable for further benchmarking of additive manufacturing techniques for rapid prototyping of acoustic materials and metamaterials. Keywords: porous materials, designed periodicity, additive manufacturing, sound absorption Affiliations:
Zieliński T.G. | - | IPPT PAN | Opiela K.C. | - | IPPT PAN | Pawłowski P. | - | IPPT PAN | Dauchez N. | - | Sorbonne University Alliance (FR) | Boutin T. | - | Sorbonne University Alliance (FR) | Kennedy J. | - | Trinity College (IE) | Trimble D. | - | Trinity College (IE) | Rice H. | - | Trinity College (IE) | Van Damme B. | - | other affiliation | Hannema G. | - | other affiliation | Wróbel R. | - | other affiliation | Kim S. | - | other affiliation | Ghaffari Mosanenzadeh S. | - | other affiliation | Fang N.X. | - | other affiliation | Yang J. | - | Clemson University (US) | Briere de La Hosseraye B. | - | other affiliation | Hornikx M.C.J. | - | other affiliation | Salze E. | - | other affiliation | Galland M.-A. | - | École Centrale de Lyon (FR) | Boonen R. | - | other affiliation | Carvalho de Sousa A. | - | other affiliation | Deckers E. | - | Katholieke Universiteit Leuven (BE) | Gaborit M. | - | other affiliation | Groby J.-P. | - | other affiliation |
| |
3. |
Zieliński T.G., Chevillotte F.♦, Deckers E.♦, Sound absorption of plates with micro-slits backed with air cavities: analytical estimations, numerical calculations and experimental validations,
APPLIED ACOUSTICS, ISSN: 0003-682X, DOI: 10.1016/j.apacoust.2018.11.026, Vol.146, pp.261-279, 2019Abstract: This work discusses many practical and some theoretical aspects concerning modelling and design of plates with micro-slits, involving multi-scale calculations based on microstructure. To this end, useful mathematical reductions are demonstrated, and numerical computations are compared with possible analytical estimations. The numerical and analytical approaches are used to calculate the transport parameters for complex micro-perforated (micro-slotted) plates, which allow to determine the effective properties of the equivalent fluid, so that at the macro-scale level the plate can be treated as a specific layer of acoustic fluid. In that way, the sound absorption of micro-slotted plates backed with air cavities can be determined by solving a multi-layer system of Helmholtz equations. Two such examples are presented in the paper and validated experimentally. The first plate has narrow slits precisely cut out using a traditional technique, while the second plate - with an original micro-perforated pattern - is 3D-printed. Keywords: micro-slotted plates, micro-perforated plates, sound absorption, microstructure-based modelling, 3D-printing Affiliations:
Zieliński T.G. | - | IPPT PAN | Chevillotte F. | - | MATELYS – Research Lab (FR) | Deckers E. | - | Katholieke Universiteit Leuven (BE) |
| |