Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Halfdan Sorbye

Haukeland University Hospital (NO)

Recent publications
1.  Dimcevski G., Kotopoulis S., Bjånes T., Hoem D., Schjøt J., Gjertsen B.T., Biermann M., Molven A., Sorbye H., McCormack E., Postema M., Gilja O.H., A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer, Journal of Controlled Release, ISSN: 0168-3659, DOI: 10.1016/j.jconrel.2016.10.007, Vol.243, pp.172-181, 2016

Abstract:
Background:
The primary aim of our study was to evaluate the safety and potential toxicity of gemcitabine combined with microbubbles under sonication in inoperable pancreatic cancer patients. The secondary aim was to evaluate a novel image-guided microbubble-based therapy, based on commercially available technology, towards improving chemotherapeutic efficacy, preserving patient performance status, and prolonging survival.

Methods:
Ten patients were enrolled and treated in this Phase I clinical trial. Gemcitabine was infused intravenously over 30 min. Subsequently, patients were treated using a commercial clinical ultrasound scanner for 31.5 min. SonoVue® was injected intravenously (0.5 ml followed by 5 ml saline every 3.5 min) during the ultrasound treatment with the aim of inducing sonoporation, thus enhancing therapeutic efficacy.

Results:
The combined therapeutic regimen did not induce any additional toxicity or increased frequency of side effects when compared to gemcitabine chemotherapy alone (historical controls). Combination treated patients (n = 10) tolerated an increased number of gemcitabine cycles compared with historical controls (n = 63 patients; average of 8.3 ± 6.0 cycles, versus 13.8 ± 5.6 cycles, p = 0.008, unpaired t-test). In five patients, the maximum tumour diameter was decreased from the first to last treatment. The median survival in our patients (n = 10) was also increased from 8.9 months to 17.6 months (p = 0.011).

Conclusions:
It is possible to combine ultrasound, microbubbles, and chemotherapy in a clinical setting using commercially available equipment with no additional toxicities. This combined treatment may improve the clinical efficacy of gemcitabine, prolong the quality of life, and extend survival in patients with pancreatic ductal adenocarcinoma.

Keywords:
Ultrasound, Microbubbles, Sonoporation, Pancreatic cancer, Image-guided therapy, Clinical trial

Affiliations:
Dimcevski G. - Haukeland University Hospital (NO)
Kotopoulis S. - Haukeland University Hospital (NO)
Bjånes T. - Haukeland University Hospital (NO)
Hoem D. - Haukeland University Hospital (NO)
Schjøt J. - Haukeland University Hospital (NO)
Gjertsen B.T. - University of Bergen (NO)
Biermann M. - Haukeland University Hospital (NO)
Molven A. - Haukeland University Hospital (NO)
Sorbye H. - Haukeland University Hospital (NO)
McCormack E. - Haukeland University Hospital (NO)
Postema M. - IPPT PAN
Gilja O.H. - Haukeland University Hospital (NO)

Conference abstracts
1.  Dimcevski G.G., Kotopoulis S., Bjåne T., Hoem D., Schjött J., Gjertsen B.T., Biermann M., Molven A., Sorbye H., McCormack E., Postema M., Gilja O.H., Ultrasound and microbubble enhanced treatment of inoperable pancreatic adeonocarcinoma, ASCO Annual Meeting, 2016-06-03/06-07, Chicago (US), Vol.34, No.suppl; abstr e15703, pp.1, 2016

Abstract:
Background: Pancreatic Adenocarcinoma (PDAC) represents one of the most lethal human cancers. Surgery is often unfeasible, and the tumors respond poorly to radiation or chemotherapeutic drugs. Consequently, pancreatic cancer represents a huge burden to society and the need for new therapeutic options is evident. Experimental research using ultrasound to improve therapeutic delivery has soared in the past decade. We aimed toevaluate the safety and potential toxicity of gemcitabine combined with microbubbles under sonication in inoperable pancreatic cancer patients. The secondary goal was to develop a novel image-guided microbubble-based therapy, based on commercially available technology, towards improving chemotherapeutic efficacy, preserving patient performance grade, and prolongation of survival. Methods: Ten patients were enrolled and treated in this Phase I clinical trial. Gemcitabine was infused intravenously over 30 min. Subsequently patients were treated using a commercial clinical ultrasound scanner for 31.5 min. SonoVue was injected intravenously (0.5 ml followed by 5 ml saline every 3.5 min) during the ultrasound treatment with the aim of enhancing therapeutic efficacy. Results: The combined therapeutic regimen did not induce any additional toxicity or increase side effect frequency when compared to gemcitabine chemotherapy alone (historical controls). Combination treated patients (n = 10) tolerated an increased number of gemcitabine cycles compared with historical controls (n = 63 patients; average of 8.3±6.0 cycles, versus 13.8±5.6 cycles). In five patients, the maximum tumor diameter was decreased during treatment. The median survival in our patients was also increased from 7.0 months to 17.6 months (p = 0.0044). Conclusions: We perform the first-in-human study evaluating the toxicity and efficacy of ultrasound and microbubble enhanced chemotherapy. It is possible to combine ultrasound, microbubbles, and chemotherapy in a clinical setting with no additional toxicity. This combined treatment may improve the clinical efficacy of chemotherapeutic agents, prolong the quality of life, and extend survival in patients with PDAC. Clinical trial information: NCT01674556.

Affiliations:
Dimcevski G.G. - Haukeland University Hospital (NO)
Kotopoulis S. - Haukeland University Hospital (NO)
Bjåne T. - Haukeland University Hospital (NO)
Hoem D. - Haukeland University Hospital (NO)
Schjött J. - other affiliation
Gjertsen B.T. - University of Bergen (NO)
Biermann M. - Haukeland University Hospital (NO)
Molven A. - Haukeland University Hospital (NO)
Sorbye H. - Haukeland University Hospital (NO)
McCormack E. - Haukeland University Hospital (NO)
Postema M. - other affiliation
Gilja O.H. - Haukeland University Hospital (NO)
2.  Dimcevski G., Kotopoulis S., Hoem D., Postema M., Gjertsen B.T., Bjåne T.K., Biermann M., McCormack E., Sorbye H., Molven A., Gilja O.H., Ultrasound-assisted treatment of an inoperable pancreatic cancer, MedViz Conference 2013, 2013/, Bergen (NO), pp.49-52, 2013

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024