Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Laleh Ghasemi-Mobarakeh

Isfahan University of Technology (IR)

Recent publications
1.  Moazzami Goudarzi Z., Soleimani M., Ghasemi-Mobarakeh L., Sajkiewicz P., Sharifianjazi F., Esmaeilkhanian A., Khaksar S., Control of drug release from cotton fabric by nanofibrous mat, International Journal of Biological Macromolecules, ISSN: 0141-8130, DOI: 10.1016/j.ijbiomac.2022.06.138, Vol.217, pp.270-281, 2022

Abstract:
A drug delivery system (DDSs) was developed in the present study based on textile substrates as drug carriers and electrospun nanofibers as a controller of release rate. Three types of drugs consisting of ciprofloxacin (CIP), clotrimazole (CLO), and benzalkonium chloride (BEN) were loaded into the cover glass (CG) and cotton fabrics (CF1 and CF2) separately. Then, the drug-loaded substrates were coated with polycaprolactone (PCL) and polycaprolactone/gelatin (PCL/Gel) nanofibers with various thicknesses. The morphology and hydrophilicity of the electrospun nanofibers and the release profile of drug-loaded samples were investigated. FTIR, XRD, and in vitro biodegradability analysis were analyzed to characterize the drug delivery system. A morphological study of electrospun fibers showed the mean diameter of the PCL and PCL/Gel nanofibers 127 ± 25 and 178 ± 38 nm, respectively. The drug delivery assay revealed that various factors affect the rate of drug releases, such as the type of drug, the type of drug carrier, and the thickness of the covered nanofibers. The study highlights the ability of drugs to load substrates with coated nanofibers as controlled drug delivery systems. In conclusion, it is shown that the obtained samples are excellent candidates for future wound dressing applications.

Keywords:
electrospinning, controlled drug release, ciprofloxacin

Affiliations:
Moazzami Goudarzi Z. - IPPT PAN
Soleimani M. - Isfahan University of Technology (IR)
Ghasemi-Mobarakeh L. - Isfahan University of Technology (IR)
Sajkiewicz P. - IPPT PAN
Sharifianjazi F. - University of Georgia (US)
Esmaeilkhanian A. - Amirkabir University of Technology (IR)
Khaksar S. - University of Georgia (US)
2.  Moazzami Goudarzi Z., Behzad T., Ghasemi-Mobarakeh L., Kharaziha M., An investigation into influence of acetylated cellulose nanofibers on properties of PCL/Gelatin electrospun nanofibrous scaffold for soft tissue engineering, POLYMER, ISSN: 0032-3861, DOI: 10.1016/j.polymer.2020.123313, Vol.213, pp.123313-1-11, 2021

Abstract:
In this study, the effective role of incorporation of cellulose nanofibers (CNF) and modified acetylated cellulose nanofibers (ACNF) on mechanical, physical, and biological properties of poly (ε-caprolactone) (PCL)/gelatin (Gel) electrospun nanofibrous scaffold was individually investigated. It was noticed that mechanical and biological properties of the scaffolds were considerably affected by the filler type and content. Although, by addition of 2 wt% ACNF, the ultimate tensile strength (UTS) of the PCL/Gel was remarkably enhanced from 2.5 ± 0.1 MPa to 4.3 ± 0.1 MPa due to homogeneous dispersion of the ACNF, however, the degradation rate of PCL/Gel scaffold was reduced about 1.66 times. Moreover, the studies on the interactions between hybrid scaffolds and fibroblast cells revealed that the incorporation of ACNF into scaffold not only showed no cytotoxic, but also promoted cell proliferation. In conclusion, PCL/Gel nanocomposite scaffolds reinforced by ACNFs show an excellent potential as a promising candidate for soft tissue engineering applications.

Keywords:
Electrospinning, Poly (ε-caprolactone), Gelatin, Cellulose nanofibers, Acetylated cellulose nanofibers, Tissue engineering

Affiliations:
Moazzami Goudarzi Z. - other affiliation
Behzad T. - other affiliation
Ghasemi-Mobarakeh L. - Isfahan University of Technology (IR)
Kharaziha M. - other affiliation
3.  Kouhi M.Z., Behzad T., Ghasemi-Mobarakeh L., Allafchian A., Moazzami Goudarzi Z., Enayati M.S., Proceeding toward the development of poly(ɛ-caprolactone)/cellulose microfibrils electrospun biocomposites using a novel ternary solvent system, The Journal of The Textile Institute, ISSN: 0040-5000, DOI: 10.1080/00405000.2019.1633216, Vol.111, No.2, pp.249-259, 2020

Abstract:
In the current study, a mixture of formic acid (FA), acetic acid (AA), and acetone was used, for the first time, as a ternary solvent system to dissolve poly(ɛ-caprolactone) (PCL). In addition, as a biomaterial reinforcement, various amounts of cellulose microfibrils (CMF) (1.5, 3, and 5 wt.%), extracted from rice husk, were added to PCL solution, and subsequently the prepared suspensions were individually electrospun. Adding acetone to FA/AA solvent system led to fabrication of uniform electrospun nanofibers with the average diameter of 178 ± 38 nm. Upon CMF incorporation, the mean electrospun fiber diameter was increased to 320 ± 132 nm at 5 wt.% CMF mostly due to the solution viscosity rise. In addition, scanning electron microscopy (SEM) confirmed wider diameter distribution in the presence of CMF. The electrospun fibers were also analyzed via wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) to study the supermolecular structure and thermal behavior of fibrous bionanocomposites, respectively. Both the characterizations positively affect the PCL crystallinity as a result of CMF incorporation. The DSC measurements showed the highest crystallinity (70.11%) at 1.5 wt.% CMF incorporation. The effect of CMF addition on the hydrophilicity of PCL was also investigated by contact angle measurement, where a decreasing trend in contact angle was observed upon CMF loading. Moreover, in vitro degradability of the bionanocomposite nonwoven mats was studied in PBS solution. The rate of degradation was enhanced in the presence of CMF. Moreover, tensile mechanical analysis was carried out and CMF inclusion had a reinforcing impact on electrospun PCL. The highest modulus (19.17 ± 0.8 MPa) and ultimate tensile strength (UTS) (4.45 ± 0.32 MPa) were achieved at 1.5 wt.% CMF addition to PCL.

Keywords:
Biocomposite, poly(Ecaprolactone), cellulose microfibrils, ternary solvent mixture, electrospinning

Affiliations:
Kouhi M.Z. - other affiliation
Behzad T. - other affiliation
Ghasemi-Mobarakeh L. - Isfahan University of Technology (IR)
Allafchian A. - other affiliation
Moazzami Goudarzi Z. - other affiliation
Enayati M.S. - Isfahan University of Technology (IR)
4.  Moazzami Goudarzi Z., Behzad T., Ghasemi-Mobarakeh L., Kharaziha M., Enayati M.S., Structural and mechanical properties of fibrous poly (caprolactone)/gelatin nanocomposite incorporated with cellulose nanofibers, POLYMER BULLETIN, ISSN: 0170-0839, DOI: 10.1007/s00289-019-02756-5, Vol.77, pp.717-740, 2020

Abstract:
To proceed with the electrospun poly (caprolactone) (PCL)/gelatin (Gel) combinations, the current research was aimed to explore the incorporation of cellulose nanofibers (CNF) into the PCL/Gel blends for the first time. Accordingly, various amounts of CNF were added to different ratios of PCL/Gel, and the corresponding electrospun nanocomposites were examined. Observing morphology via scanning electron microscopy proved, unexpectedly, increasing fibers diameter upon CNF addition into PCL/Gel blends. Mechanical analysis in tensile mode revealed more brittle electrospun PCL/Gel when more Gel was included into the blend due to higher Young’s modulus and lower ultimate tensile strength and strain at break. Addition of various contents of CNF led to strain reduction while displayed a summit-like curve for UTS and modulus, where registered maximum values at 2 wt% CNF for all PCL/Gel/CNF. Among the electrospun nanocomposites the highest UTS (3.24 ± 0.22 MPa) belonged to sample including 70 wt% PCL, 30 wt% Gel, and 2 wt% CNF (P70/2CNF), while P30/2CNF recorded maximum modulus (93.89 ± 10.44 MPa). The wide-angle X-ray scattering confirmed increase in PCL crystallinity upon CNF incorporation Furthermore, the presence of PCL, Gel, and CNF in electrospun composites was confirmed with Fourier transform infrared spectroscopy. Degradability of electrospun nanocomposites was carried out in PBS solution, which showed that CNF addition reduced degradation rate of PCL/Gel blends.

Keywords:
Poly (caprolactone), Gelatin, Cellulose nanofibers, Electrospun nanocomposite

Affiliations:
Moazzami Goudarzi Z. - other affiliation
Behzad T. - other affiliation
Ghasemi-Mobarakeh L. - Isfahan University of Technology (IR)
Kharaziha M. - other affiliation
Enayati M.S. - Isfahan University of Technology (IR)
5.  Enayati M.S., Behzad T., Sajkiewicz P., Bagheri R., Ghasemi-Mobarakeh L., Pierini F., Theoretical and experimental study of the stiffness of electrospun composites of poly(vinyl alcohol), cellulose nanofibers, and nanohydroxy apatite, CELLULOSE, ISSN: 0969-0239, DOI: 10.1007/s10570-017-1601-6, Vol.25, No.1, pp.65-75, 2018

Abstract:
The present study aims to theoretically model and verify the mechanical behavior of electrospun fibers of poly(vinyl alcohol) (PVA) reinforced by nanohydroxy apatite (nHAp) and cellulose nanofibers (CNF), the three composites designated as PVA/nHAp, PVA/CNF, and PVA/nHAp/CNF. Tensile tests and AFM nanoindentation studies were used to measure tensile modulus of electrospun scaffolds and single fibers respectively. Halpin–Tsai and Ouali models were applied to predict the stiffness of electrospun mats. Theoretical analysis according to the Halpin–Tsai model showed that CNF have no preferred orientation in the electrospun fibers, particularly at higher filler content. Additionally, this model provided a better prediction than Ouali model, especially at lower filler content. Theoretical models based on the geometry of an unit cell in open-cell structure such as honeycomb, tetrakaidecahedron and cube models simulate electrospun scaffolds. Among the structural models for analysis of porous scaffolds, the honeycomb model showed the best prediction, tetrakaidecahedron model—a moderate one, and cube model was the worst. In general, it was proved by both experiment and theory that the porous structure of electrospun mat caused significant modulus reduction of nanocomposites.

Keywords:
Nanocomposites, Cellulose nanofibers, Electrospinning, Modulus

Affiliations:
Enayati M.S. - Isfahan University of Technology (IR)
Behzad T. - Isfahan University of Technology (IR)
Sajkiewicz P. - IPPT PAN
Bagheri R. - Isfahan University of Technology (IR)
Ghasemi-Mobarakeh L. - Isfahan University of Technology (IR)
Pierini F. - IPPT PAN
6.  Enayati M.S., Behzad T., Sajkiewicz P., Rafienia M., Bagheri R., Ghasemi-Mobarakeh L., Kołbuk D., Pahlevanneshan Z., Bonakdar S.H., Development of electrospun poly (vinyl alcohol)-based bionanocomposite scaffolds for bone tissue engineering, Journal of Biomedical Materials Research Part A, ISSN: 1549-3296, DOI: 10.1002/jbm.a.36309, Vol.106, No.4, pp.1111-1120, 2018

Abstract:
The article is focused on the role of nanohydroxy apatite (nHAp) and cellulose nanofibers (CNFs) as fillers in the electrospun poly (vinyl alcohol) (ES-PVA) nanofibers for bone tissue engineering (TE). Fibrous scaffolds of PVA, PVA/nHAp (10 wt.%), and PVA/nHAp(10 wt.%)/CNF(3 wt.%) were successfully fabricated and characterized. Tensile test on electrospun PVA/nHAp10 and PVA/nHAp10/CNF3 revealed a three-fold and seven-fold increase in modulus compared with pure ES-PVA (45.45 ± 4.77). Although, nanofiller loading slightly reduced the porosity percentage, all scaffolds had porosity higher than 70%. In addition, contact angle test proved the great hydrophilicity of scaffolds. The presence of fillers reduced in vitro biodegradation rate in PBS while accelerates biomineralization in simulated body fluid (SBF). Furthermore, cell viability, cell attachment, and functional activity of osteoblast MG-63 cells were studied on scaffolds showing higher cellular activity for scaffolds with nanofillers. Generally, the obtained results confirm that the 3-componemnt fibrous scaffold of PVA/nHAp/CNF has promising potential in hard TE.

Keywords:
electrospinning, PVA bionanocomposites, scaffolds, bone tissue engineering, cell culture

Affiliations:
Enayati M.S. - Isfahan University of Technology (IR)
Behzad T. - Isfahan University of Technology (IR)
Sajkiewicz P. - IPPT PAN
Rafienia M. - Isfahan University of Medical Sciences (IR)
Bagheri R. - Isfahan University of Technology (IR)
Ghasemi-Mobarakeh L. - Isfahan University of Technology (IR)
Kołbuk D. - IPPT PAN
Pahlevanneshan Z. - Payame Noor University (IR)
Bonakdar S.H. - Pasteur Institute of Iran (IR)
7.  Enayati M.S., Behzad T., Sajkiewicz P., Bagheri R., Ghasemi‑Mobarakeh L., Łojkowski W., Pahlevanneshan Z., Ahmadi M., Crystallinity study of electrospun poly (vinyl alcohol) nanofibers: effect of electrospinning, filler incorporation, and heat treatment, IRANIAN POLYMER JOURNAL, ISSN: 1026-1265, DOI: 10.1007/s13726-016-0455-3, Vol.25, No.7, pp.647-659, 2016

Abstract:
This study aims to explore crystallinity variations of polyvinyl alcohol (PVA) as a result of electrospinning, filler addition, and heat treatment. Pure PVA and PVA nanocomposite fibers containing only nanohydroxy apatite (nHAp) and together with cellulose nanofibers (CNF) were electrospun. Electrospun nanofibers were heat treated at 180°C for 8 h. The morphology of electrospun fibers was evaluated by scanning electron microscopy (SEM) while Fourier transform infrared spectroscopy, differential scanning calorimetry, and wide angle X-ray scattering were used to analyze nanofibers crystallinity. Un-treated electrospun nanofibers were shrank and lost their porous structure in water, while heat treatment of nanofibers caused stabilization of fibrous mats in boiling water. It was concluded that the crystallinity of electrospun PVA were considerably reduced compared to PVA powder due to formation of metastable—small and/or defective crystals. Adding small content (1 wt%) of nHAp led to increase in electrospun nanofibers crystallinity. However, incorporation of higher content of nHAp and CNF caused reduction of crystallinity most probably due to possible interactions among components which interrupt the orientation of macromolecules. All analyzing methods proved the crystallinity enhancement of nanofibers upon heat treatment which can be attributed mostly to water evaporation from electrospun fibers structure.

Keywords:
Polyvinyl alcohol, Crystallinity, Electrospinning, Nanofiber, Nanofiller, Heat treatment

Affiliations:
Enayati M.S. - Isfahan University of Technology (IR)
Behzad T. - Isfahan University of Technology (IR)
Sajkiewicz P. - IPPT PAN
Bagheri R. - Isfahan University of Technology (IR)
Ghasemi‑Mobarakeh L. - Isfahan University of Technology (IR)
Łojkowski W. - other affiliation
Pahlevanneshan Z. - Payame Noor University (IR)
Ahmadi M. - Isfahan University of Technology (IR)
8.  Enayati M.S., Behzad T., Sajkiewicz P., Bagheri R., Ghasemi‑Mobarakeh L., Kuśnieruk S., Rogowska-Tylman J., Pahlevanneshan Z., Choińska E., Święszkowski W., Fabrication and characterization of electrospun bionanocomposites of poly (vinyl alcohol)/ nanohydroxyapatite/cellulose nanofibers, International Journal of Polymeric Materials and Polymeric Biomaterials, ISSN: 0091-4037, DOI: 10.1080/00914037.2016.1157798, Vol.65, No.13, pp.660-674, 2016

Abstract:
The aim of the present study was preparation, optimization, and systematic characterization of electrospun bionanocomposite fibers based on polyvinyl alcohol (PVA) as matrix and nanohydroxy apatite (nHAp) and cellulose nanofibers (CNF) as nanoreinforcements. The presence of nHAp and nHAp-CNF affected the morphology of electrospun mats and reduced fiber diameter, particularly at a higher content of nanofillers. The obtained results of FTIR, DSC, and WAXS proved the crystallinity reduction of electrospun nancomposites. Both nHAp and nHAp-CNF addition led to a significant increase of Young modulus with the highest stiffness for nanocomposite fibers at 10 wt% of nHAp and 3 wt% of CNF.

Keywords:
Bionanocomposite, cellulose nanofibers, electrospinning, nanohydroxy apatite

Affiliations:
Enayati M.S. - Isfahan University of Technology (IR)
Behzad T. - Isfahan University of Technology (IR)
Sajkiewicz P. - IPPT PAN
Bagheri R. - Isfahan University of Technology (IR)
Ghasemi‑Mobarakeh L. - Isfahan University of Technology (IR)
Kuśnieruk S. - other affiliation
Rogowska-Tylman J. - other affiliation
Pahlevanneshan Z. - Payame Noor University (IR)
Choińska E. - Warsaw University of Technology (PL)
Święszkowski W. - other affiliation

Conference papers
1.  Enayati M.S., Behzad T., Sajkiewicz P., Rafienia M., Bagheri R., Ghasemi-Mobarakeh L., A novel electrospun three-component Bionanocomposite for bone tissue engineering, ICNS7, 7th International Conference on Nanostructures, 2018-02-27/03-01, Teheran (IR), pp.1-3, 2018

Abstract:
In the present study, a full bionanocomposite scaffold from poly (vinyl alcohol) (PVA), nanohydroxy apatite (nHAp) and cellulose nanofibers (CNF) was fabricated by electospinning and its potential application for bone tissue engineering was investigated. Morphology of the electrospun scaffolds was seen by field emission scanning electron microscope (FE-SEM). Both nHAp and CNF enhanced the tensile modulus of the scaffolds; however, both tensile strength as well as slongation at break showed reduced behaviour. Porosity measurement showed that scaffolds had porosity more than 70% which is appropriate for tissue engineering scaffolds. Contact angle test proved high hydrophilicty of electrospun mats while nanofiller incorporation promoted hydrophilicity. Biodegradability was investigated in phosphate buffer saline (PBS). In vitro biomineralization in simulated body fluid (SBF) and MTT cytotoxicity analysis showed that addition of nHAp and CNF increased bioactivity and cell viability of the scaffolds. The obtained results offered a 3-component promising scaffold for bone tissue engineering.

Keywords:
Bionanocomposite, Scaffold, Electrospinning, Poly (vinyl alcohol) and Bone tissue engineering

Affiliations:
Enayati M.S. - Isfahan University of Technology (IR)
Behzad T. - Isfahan University of Technology (IR)
Sajkiewicz P. - IPPT PAN
Rafienia M. - Isfahan University of Medical Sciences (IR)
Bagheri R. - Isfahan University of Technology (IR)
Ghasemi-Mobarakeh L. - Isfahan University of Technology (IR)

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024