1. |
Wasyleczko M.♦, Sikorska W.♦, Przytulska M.♦, Dulnik J., Chwojnowski A.♦, Polyester membranes as 3D scaffolds for cell culture,
Desalination and Water Treatment, ISSN: 1944-3994, DOI: 10.5004/dwt.2021.26658, Vol.214, pp.181-193, 2021Abstract: The study presents two types of three-dimensional membranes made of the biodegradable copolymer. They were obtained by the wet-phase inversion method using different solvent and pore precursors. In one case, a nonwoven made of gelatin and polyvinylpyrrolidone (PVP) as precursors of macropores and small pores, respectively, were used. In the second case, PVP nonwovens and Pluronic were used properly for macro- and micro-pores. As the material, a biodegradable poly(L-lactide-co-ε-caprolactone) is composed of 30% ε-caprolactone and 70% poly(L-lactic acid) was used. Depending on the pore precursors, different membrane structures were obtained. The morphology of pores was studied using the MeMoExplorer™, an advanced software designed for computer analysis of the scanning electron microscopy images. The scaffolds were degraded in phosphate-buffered saline and Hank’s balanced salt solutions at 37°C. Moreover, the porosity of the membranes before and after hydrolysis was calculated. Keywords: 3D scaffolds, poly(L-lactide-co-ε-caprolactone), porosity of membrane, phase inversion method, degradation of scaffolds Affiliations:
Wasyleczko M. | - | other affiliation | Sikorska W. | - | Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL) | Przytulska M. | - | other affiliation | Dulnik J. | - | IPPT PAN | Chwojnowski A. | - | Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL) |
| |
2. |
Przytulska M.♦, Kulikowski Juliusz L.♦, Lewińska D.♦, Grzeczkowicz M.♦, Kupikowska-Stobba B.♦, Computer-aided image analysis for microcapsules’ quality assessment,
Biocybernetics and Biomedical Engineering, ISSN: 0208-5216, DOI: 10.1016/j.bbe.2015.05.005, Vol.35, No.4, pp.342-350, 2015 | |