Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

N. Mazzawi

Technion-Israel Institute of Technology (IL)

Recent publications
1.  Mazzawi N., Postema M., Kimmel E., Bubble-Like Response of Living Blood Cells and Microparticles in an Ultrasound Field, ACTA PHYSICA POLONICA A, ISSN: 0587-4246, DOI: 10.12693/APhysPolA.127.103, Vol.127, No.1, pp.103-105, 2015

Abstract:
The bilayer sonophore model suggests that ultrasound induces a pulsating structure in the intra-membrane hydrophobic space between the two lipid monolayer lea ets of the cell membrane, assembled by dissolved gas of the surrounding area, which absorbs acoustic energy and transforms it by creating intra-cellular structural changes. This void has been referred to as a bilayer sonophore. The bilayer sonophore in ates and de ates periodically when exposed to ultrasound and may itself radiate acoustic pressure pulses in the surrounding medium in the same way a gas bubble does: once exposed to ultrasound the bilayer sonophore becomes a mechanical oscillator and a source of intracellular cavitation activity. In this paper, we describe observations of the clustering behaviour of living cells and several other particles in a standing sound eld generated inside a ring transducer. Upon sonication, blood cells and monodisperse polystyrene particles were observed to have been trapped in the same locations, corresponding to nodes of the ultrasound eld. Because polystyrene is hydrophobic, it behaves like a particle trapped inside a thin gas shell. In fact, the sonophore model treats biological cells in a similar way. Microbubbles that form the ultrasound contrast agent Quantison behave di erently, however. These microbubbles accumulated in circles faster than blood cells and polystyrene particles. In addition, they form tightly packed clusters at the nodes, indicating very strong secondary Bjerknes forces. Cluster formation is not to be expected in cells with predicted sonophore sizes on the order of 10 - 100 nm.

Affiliations:
Mazzawi N. - Technion-Israel Institute of Technology (IL)
Postema M. - other affiliation
Kimmel E. - Technion-Israel Institute of Technology (IL)

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024