Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

O. Radionov


Conference abstracts
1.  Tarelnyk V., Konoplianchenko I., Haponova O., Radionov O., Antoszewski B., Kundera C., Tarelnyk N., Voloshko T., Bondarev S., Gerasimenko V., Ryasna O., Sarzhanov B., Polyvanyi A., Application of Wear-Resistant Nanostructures Formed by Ion Nitridizing & Electrospark Alloying for Protection of Rolling Bearing Seat Surfaces, 2022 IEEE, 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP), 2022-09-11/09-16, Kraków (PL), DOI: 10.1109/NAP55339.2022, pp.1-1, 2022

Abstract:
The paper analyzes the works devoted to solving problems affecting the bearing life of rolling bearings (RB) and to revealing reserves for its increase. There proposed a new technology for forming a protective coating on the shaft bearing journal or on the surface of a sleeve pressed thereon, which consists in the use of a combined technology comprising a process for stage-by-stage aluminizing by the method of electrospark alloying (A ESA ) followed by a process of ion nitriding (IN). Such a coating has a 100% continuity, the greatest thickness of the increased hardness zone of 300 µm, the surface microhardness of 7700 MPa, and the roughness (Ra) after non-abrasive ultrasonic finishing (NAUF) of 0.5 µm, The results of the X-ray microanalysis indicate that an increased content of aluminum is observed in the surface layer at the distance of up to 40 µm after the stage-by-stage AESA process. The research results have shown that in order to restore the shaft bearing journal neck surface layer hardness, which had been lost because of the repair work, the step-by-step AESA technology is more preferable. Thus, when removing the surface layer to a depth of 0.15 mm and subsequently carburizing by the method of electrospark alloying (C ESA ), the maximum microhardness of the surface layer is 7250 MPa, and the thickness of the zone of the increased hardness is 150 µm, At subsequently processing by the AESA method, these quality parameters of the surface layer are, respectively, 7350 MPa and 210 µm. The use of the NAUF method, both after C ESA and AESA processes, makes it possible to reduce the surface roughness up to Ra = 0.5 µm. To decrease the surface roughness of the RB housing seat, it is advisably to practice burnishing with a diamond tool (DB) after the A ESA process

Affiliations:
Tarelnyk V. - Sumy National Agrarian University (UA)
Konoplianchenko I. - other affiliation
Haponova O. - other affiliation
Radionov O. - other affiliation
Antoszewski B. - Kielce University of Technology (PL)
Kundera C. - other affiliation
Tarelnyk N. - Sumy National Agrarian University (UA)
Voloshko T. - other affiliation
Bondarev S. - other affiliation
Gerasimenko V. - other affiliation
Ryasna O. - other affiliation
Sarzhanov B. - other affiliation
Polyvanyi A. - other affiliation

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024