Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

R. Gieleta


Conference abstracts
1.  Sadowski T., Postek E., Pietras D., Gieleta R., Kruszka L., Non-linear dynamic and quasi-static responses of two-phase ceramic matrix and metal matrix composites subjected to compression and degradation, ICTAM2021, 25th International Congress of Theoretical and Applied Mechanics, 2021-08-22/08-27, Mediolan (virtual) (IT), pp.257-258, 2021

Abstract:
The paper presents modelling and experimental testing of non-linear degradation processes developing in the two-phase ceramic matrix (CMCs) and metal matrix composites (MMCs) subjected to quasi-static and dynamic compressive loading. Modelling was performed by a multiscale approach using both: (1) analytical and (2) numerical methods and selected Representative Volume Elements (RVE) based on SEM observations of composites. Both quasi-static and dynamic experimental tests were done applying standard MTS (100 kN) servo-hydraulic machine and Split Hopkinson Pressure Bar (SHPB) stand for impact tests with loading velocities 20 – 30 m/s. As a result, we observed for CMCs in quasi-static loading failure mode by splitting of cylindrical samples, whereas for impact loading dynamic crushing process took place.

Keywords:
metal-matrix composites, dynamic testing, Split Hopkinson Pressure Bar, peridynamics

Affiliations:
Sadowski T. - Lublin University of Technology (PL)
Postek E. - IPPT PAN
Pietras D. - Lublin University of Technology (PL)
Gieleta R. - other affiliation
Kruszka L. - Military University of Technology (PL)

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024