1. |
Frydrych K., Jarzębska A.♦, Virupakshi S., Kowalczyk-Gajewska K., Bieda M.♦, Chulist R.♦, Skorupska M.♦, Schell N.♦, Sztwiernia K.♦, Texture-based optimization of crystal plasticity parameters: application to zinc and its alloy,
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, ISSN: 1073-5623, DOI: 10.1007/s11661-021-06285-7, Vol.52, No.8, pp.3257-3273, 2021Abstract: Evolutionary algorithms have become an extensively used tool for identification of crystal plasticity parameters of hexagonal close packed metals and alloys. However, the fitness functions were usually built using the experimentally measured stress–strain curves. Here, the fitness function is built by means of numerical comparison of the simulated and experimental textures. Namely, the normalized texture difference index is minimized. The evolutionary algorithm with the newly developed fitness function is tested by performing crystal plasticity parameter optimization for both pure zinc and zinc-magnesium alloy. These materials are promising candidates for bioabsorbable implants due to good biocompatibility and optimal corrosion rate. Although their mechanical properties in the as-cast state do not fulfill the requirements, they can be increased by means of hydrostatic extrusion. The developed modeling approach enabled acquisition of the crystal plasticity parameters and analysis of the active deformation mechanisms in zinc and zinc-magnesium alloy subjected to hydrostatic extrusion. It was shown that although slip systems are the main deformation carrier, compressive twinning plays an important role in texture evolution. However, the texture is also partially affected by dynamic recrystallization which is not considered within the developed framework. Affiliations:
Frydrych K. | - | IPPT PAN | Jarzębska A. | - | Institute of Metallurgy and Materials Science, Polish Academy of Sciences (PL) | Virupakshi S. | - | IPPT PAN | Kowalczyk-Gajewska K. | - | IPPT PAN | Bieda M. | - | Institute of Metallurgy and Materials Science, Polish Academy of Sciences (PL) | Chulist R. | - | Institute of Metallurgy and Materials Science, Polish Academy of Sciences (PL) | Skorupska M. | - | Institute of High Pressure Physics, Polish Academy of Sciences (PL) | Schell N. | - | other affiliation | Sztwiernia K. | - | Institute of Metallurgy and Materials Science, Polish Academy of Sciences (PL) |
| |
2. |
Nalepka K.♦, Skoczeń B.♦, Ciepielowska M.♦, Schmidt R.♦, Tabin J., Schmidt E.♦, Zwolińska-Faryj W.♦, Chulist R.♦, Phase transformation in 316L austenitic steel induced by fracture at cryogenic temperatures: experiment and modelling,
Materials, ISSN: 1996-1944, DOI: 10.3390/ma14010127, Vol.14, No.1, pp.127-1-27, 2021Abstract: Investigations by electron backscatter diffraction (EBSD) and X-ray diffraction with the use of synchrotron radiation, as well as parallel extended finite element (XFEM) simulations, reveal the evolution of the 316L stainless steel microstructure in the vicinity of a macro-crack developing at the temperature of liquid helium (4.2 K). The fracture propagation induces a dynamic, highly localized phase transformation of face-centred cubic austenite into α' martensite with a body-centred cubic structure. Synchrotron studies show that the texture of the primary phase controls the transition process. The austenite grains, tending to the stable Brass orientation, generate three mechanisms of the phase transformation. EBSD studies reveal that the secondary phase particles match the ordered austenitic matrix. Hence, interphase boundaries with the Pitsch disorientation are most often formed and α’ martensite undergoes intensive twinning. The XFEM simulations, based on the experimentally determined kinetics of the phase transformation and on the relevant constitutive relationships, reveal that the macro-crack propagates mainly in the martensitic phase. Synchrotron and EBSD studies confirm the almost 100% content of the secondary phase at the fracture surface. Moreover, they indicate that the boundaries formed then are largely random. As a result, the primary beneficial role of martensite as reinforcing particles is eliminated. Keywords: austenitic steel, cryogenic temperatures, fracture process, fcc-bcc phase transformation, synchrotron radiation, electron backscatter diffraction, XFEM simulation Affiliations:
Nalepka K. | - | other affiliation | Skoczeń B. | - | Cracow University of Technology (PL) | Ciepielowska M. | - | other affiliation | Schmidt R. | - | other affiliation | Tabin J. | - | IPPT PAN | Schmidt E. | - | other affiliation | Zwolińska-Faryj W. | - | other affiliation | Chulist R. | - | Institute of Metallurgy and Materials Science, Polish Academy of Sciences (PL) |
| |