Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

S.P. Łepkowski

Institute of High Pressure Physics, Polish Academy of Sciences (PL)

Recent publications
1.  Teisseyre H., Suski T., Łepkowski S.P., Perlin P., Jurczak G., Dłużewski P., Daudin B., Grandjean N., Strong electric field and nonuniformity effects in GaN/AlN quantum dots revealed by high pressure studies, APPLIED PHYSICS LETTERS, ISSN: 0003-6951, DOI: 10.1063/1.2219381, Vol.89, No.5, pp.51902-1-3, 2006

Abstract:
The photoluminescence (PL) from GaN quantum dots (QDs) embedded in AlN has been investigated under hydrostatic pressure. The measured pressure coefficient of emitted light energy [dE / dP] shows a negative value, in contrast with the positive pressure coefficient of the GaN band gap. We also observed that increasing pressure leads to a significant decrease of the light emission intensity and an asymmetric broadening of the PL band. All these effects are related to the pressure-induced increase of the built-in electric field. A comparison is made between experimental results and the proposed theoretical model which describes the pressure behavior of nitride QDs.

Keywords:
III-V semiconductor, Quantum dot, Piezoelectricity, Photoluminescence

Affiliations:
Teisseyre H. - Institute of Physics, Polish Academy of Sciences (PL)
Suski T. - Institute of High Pressure Physics, Polish Academy of Sciences (PL)
Łepkowski S.P. - Institute of High Pressure Physics, Polish Academy of Sciences (PL)
Perlin P. - Institute of High Pressure Physics, Polish Academy of Sciences (PL)
Jurczak G. - IPPT PAN
Dłużewski P. - IPPT PAN
Daudin B. - CNRS (FR)
Grandjean N. - École Polytechnique Federale de Lausanne (CH)
2.  Łepkowski S.P., Majewski J.A., Jurczak G., Nonlinear elasticity in III-N compounds: ab-initio calculations, PHYSICAL REVIEW B, ISSN: 1098-0121, Vol.72, pp.245201-0, 2005

Abstract:
We have studied the nonlinear elasticity effects in zinc-blende and wurtzite crystallographic phases of III-N compounds. Particularly, we have determined the pressure dependences of elastic constants in InN, GaN, and AlN by performing ab initio calculations in the framework of plane-wave pseudopotential implementation of the density-functional theory. The calculations have been performed employing two exchange-correlation functionals, one within the local density approximation and the other within the generalized gradient approximation. We have found that C11, C12 in zinc-blende nitrides and C11, C12, C13, C33 in wurtzite nitrides depend significantly on hydrostatic pressure. Much weaker dependence on pressure has been observed for C44 elastic constant in both zinc-blende and wurtzite phases. Further, we have examined the influence of pressure dependence of elastic constants on the pressure coefficient of light emission, dE / dP, in wurtzite InGaN / GaN and GaN / AlGaN quantum wells. We have shown that the pressure dependence of elastic constants leads to a significant reduction of dE / dP in nitride quantum wells. Finally, we have considered the influence of nonlinear elasticity of III-N compounds on the properties of hexagonal nitride quantum dots (QDs). For typical wurtzite GaN / AlN QDs, we have shown that taking into account pressure dependence of elastic constants results in the decrease of volumetric strain in the QD region by about 7%. Simultaneously, the average z component of the piezoelectric polarization in the QDs increases by 0.1 MV/ cm compared to the case when linear elastic theory is used. Both effects, i.e., decrease of volumetric strain as well as increase of piezoelectric field, decrease the band-to-band transition energies in the QDs.

Keywords:
III-V semiconductor, ab-initio calculation, nonlinear elasticity, third order elastic coefficient

Affiliations:
Łepkowski S.P. - Institute of High Pressure Physics, Polish Academy of Sciences (PL)
Majewski J.A. - other affiliation
Jurczak G. - IPPT PAN
3.  Łepkowski S.P., Majewski J.A., Jurczak G., Nonlinear elasticity in wurtzite GaN/AlN planar superlattices and quantum dots, ACTA PHYSICA POLONICA A, ISSN: 0587-4246, Vol.108, No.5, pp.749-754, 2005

Abstract:
The elastic stiffness tensors for wurtzite GaN and AlN show a significant hydrostatic pressure dependence, which is the evidence of nonlinear elasticity of these compounds. We have examined how pressure dependence of elastic constants for wurtzite nitrides influences elastic and piezoelectric properties of GaN/AlN planar superlattices and quantum dots. Particularly, we show that built-in hydrostatic pressure, present in both quantum wells of the GaN/AlN superlattices and GaN/AlN quantum dots, increases significantly by 0.3–0.7 GPa when nonlinear elasticity is used. Consequently, the compressive volumetric strain in quantum wells and quantum dots decreases in comparison to the case of the linear elastic theory. However, the z-component of the built-in electric field in the quantum wells and quantum dots increases considerably when nonlinear elasticity is taken into account. Both effects, i.e., a decrease in the compressive volumetric strain as well as an increase in the built-in electric field, decrease the band-to-band transition energies in the quantum wells and quantum dots.

Keywords:
III-V semiconductor, nonlinear elasticity, third order elasic coefficient

Affiliations:
Łepkowski S.P. - Institute of High Pressure Physics, Polish Academy of Sciences (PL)
Majewski J.A. - other affiliation
Jurczak G. - IPPT PAN

Conference papers
1.  Łepkowski S.P., Jurczak G., Quantum confined Stark effect in vertically correlated GaN/AlN quantum dots, ICNS-6, 6th International Conference on Nitride Semiconductors, 2005-08-28/09-02, Bremen (GE), DOI: 10.1002/pssc.200565229, Vol.3, No.6, pp.2052-2055, 2006

Abstract:
We investigate Quantum Confined Stark Effect (QCSE) in vertically correlated wurtzite GaN/AlN QDs, having hexagonal pyramid-shape. We show that the QCSE in these structures depends not only on the vertical dimensions, i.e., the height of the QDs and the thickness of the barriers, but also on their base diameter. We show that for typical wurtzite GaN/AlN QDs, having the base diameter of 19.5nm, drop of the electrostatic potential in the QD region slightly increases with increasing the width of barriers. Consequently, the band-to-band transition energies in the QDs decrease. Qualitatively similar but a factor of two stronger dependences is obtained for superlattices of QWs having the same vertical dimensions. The increase of the base diameter of the dots results in stronger dependences of both the electrostatic potential and the band-to-band transition energy on the thickness on barriers.

Keywords:
III-V semiconductor, Quantum dot, Piezoelectricity, Quantum confined Stark effect

Affiliations:
Łepkowski S.P. - Institute of High Pressure Physics, Polish Academy of Sciences (PL)
Jurczak G. - IPPT PAN
2.  Jurczak G., Łepkowski S.P., Dłużewski P., Suski T., Modeling of elastic, piezoelectric and optical properties of vertically correlated GaN/AlN quantum dots, E-MRS 2004, Symposium on Science and Technology of Nitrides and Related Materials/Wide Band Gap II-VI Semiconductors, E-MRS 2004 FALL MEETING SYMPOSIA C AND F, 2004-08-06/08-10, Warszawa (PL), DOI: 10.1002/pssc.200460604, Vol.2, No.3, pp.972-975, 2005

Abstract:
We theoretically investigate elastic, piezoelectric and optical properties of wurtzite GaN/AlN quantum dots, having hexagonal pyramid-shape, stacked in a multilayer. We show that the strain existing in quantum dots and barriers depends significantly on the distance between the dots i.e. on the width of AlN barriers. Drop of the electrostatic potential in the quantum dot region slightly increases with increasing of the barrier width. This increase is however much smaller for QDs than for superlattice of quantum wells. Consequently, band-to-band transition energies in the vertically correlated quantum dots show rather weak dependence on the width of AlN barriers.

Keywords:
III-V semiconductor, quantum dot, piezoelectricity, elastic strain, electrostatic potential

Affiliations:
Jurczak G. - IPPT PAN
Łepkowski S.P. - Institute of High Pressure Physics, Polish Academy of Sciences (PL)
Dłużewski P. - IPPT PAN
Suski T. - Institute of High Pressure Physics, Polish Academy of Sciences (PL)

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024