Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

S. Yu


Recent publications
1.  Hou J., Li C., Jankowski Ł., Shi Y., Su L., Yu S., Geng T., Damage identification of suspender cables by adding virtual supports with the substructure isolation method, STRUCTURAL CONTROL AND HEALTH MONITORING, ISSN: 1545-2255, DOI: 10.1002/stc.2677, Vol.28, No.3, pp.e2677-1-19, 2021

Abstract:
Damage of bridge cables is mainly manifested as the decrease in cable forces. These forces are affected by the boundary conditions, cable length, cable stiffness, and cable appendages, making it hard to identify the cable forces. Based on the substructure isolation method, this study proposes an approach for cable force identification to judge cable damage by adding virtual supports to each cable so that the cables share the same length and boundary conditions. The cable forces can then be identified according to the relationship between the natural frequency and cable forces. The basic concept is that the boundary sensors are transformed into virtual supports by a linear combination of the convolution of measured responses to achieve the zero boundary response. A finite element model of a suspension bridge was used to validate the proposed method in a simulation. When the virtual supports were added to the cables, the relationship between the cable forces and the natural frequency was almost linear, and the cable damage could be successfully identified with 5% noise. Finally, the effectiveness of the proposed method was verified experimentally, and the natural frequency of the isolated cable substructure was confirmed to be a highly sensitive damage indicator.

Keywords:
cable damage, cable forces, natural frequency, structural health monitoring (SHM), substructure isolation method, virtual supports

Affiliations:
Hou J. - Dalian University of Technology (CN)
Li C. - other affiliation
Jankowski Ł. - IPPT PAN
Shi Y. - other affiliation
Su L. - Dalian University of Technology (CN)
Yu S. - other affiliation
Geng T. - other affiliation
2.  Daniels Michael J.D., Rivers-Auty J., Schilling T., Spencer Nicholas G., Watremez W., Fasolino V., Booth Sophie J., White Claire S., Baldwin Alex G., Freeman S., Wong R., Latta C., Yu S., Jackson J., Fischer N., Koziel V., Pillot T., Bagnall J., Allan Stuart M., Paszek P., Galea J., Harte Michael K., Eder C., Lawrence Catherine B., Brough D., Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models, Nature Communications, ISSN: 2041-1723, DOI: 10.1038/ncomms12504, Vol.7, pp.12504-1-10, 2016

Abstract:
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase-1 (COX-1) and COX-2 enzymes. The NLRP3 inflammasome is a multi-protein complex responsible for the processing of the proinflammatory cytokine interleukin-1β and is implicated in many inflammatory diseases. Here we show that several clinically approved and widely used NSAIDs of the fenamate class are effective and selective inhibitors of the NLRP3 inflammasome via inhibition of the volume-regulated anion channel in macrophages, independently of COX enzymes. Flufenamic acid and mefenamic acid are efficacious in NLRP3-dependent rodent models of inflammation in air pouch and peritoneum. We also show therapeutic effects of fenamates using a model of amyloid beta induced memory loss and a transgenic mouse model of Alzheimer’s disease. These data suggest that fenamate NSAIDs could be repurposed as NLRP3 inflammasome inhibitors and Alzheimer’s disease therapeutics.

Affiliations:
Daniels Michael J.D. - other affiliation
Rivers-Auty J. - other affiliation
Schilling T. - other affiliation
Spencer Nicholas G. - other affiliation
Watremez W. - other affiliation
Fasolino V. - other affiliation
Booth Sophie J. - other affiliation
White Claire S. - other affiliation
Baldwin Alex G. - other affiliation
Freeman S. - other affiliation
Wong R. - other affiliation
Latta C. - other affiliation
Yu S. - other affiliation
Jackson J. - other affiliation
Fischer N. - other affiliation
Koziel V. - other affiliation
Pillot T. - other affiliation
Bagnall J. - other affiliation
Allan Stuart M. - other affiliation
Paszek P. - other affiliation
Galea J. - other affiliation
Harte Michael K. - other affiliation
Eder C. - other affiliation
Lawrence Catherine B. - other affiliation
Brough D. - other affiliation

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024