Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Bin Wang


Recent publications
1.  Chang S., Wang K., Wang B., Kopeć M., Li Z., Wang L., Liu G., Effects of rapid heating on non-equilibrium microstructure evolution and strengthening mechanisms of titanium alloy, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, ISSN: 0921-5093, DOI: 10.1016/j.msea.2023.145337, No.145337, pp.1-33, 2023

Abstract:
In this paper, the effects of heating parameters, including temperature ranging from 900 ℃ to 1000 ℃, heating rates ranging from 2 ℃∙s-1 to 100 ℃∙s-1, and 120 s soaking on the non-equilibrium microstructure evolution of Ti-6Al-4V alloy were studied. Microstructures after heating were characterized to reveal the mechanism of non-equilibrium phase transformation. Uniaxial tensile tests at room temperature were carried out to evaluate the effects of non-equilibrium microstructure on the mechanical properties. Results show that higher heating rate and lower temperature lead to lower β phase volume fraction and finer β grains. A transition region with element gradient forms in the αp grain near the αp/β phase boundary and transfers into β phase gradually during the heating. Rapid heating could confine the movement of the transition region, and therefore reduce the α→β transition and growth of the β phase. When the Ti-6Al-4V alloy was heated to 1000 ℃ at a rate of 50 ℃/s and then quenched immediately, the tensile strength was improved by 19.5% and reached up to 1263.0 MPa with the elongation only decreasing from 13.6% to 9.6% compared with the initial material. The main strengthening mechanism is that the rapid heating in the single-phase region avoids the rapid growth of the β phase, which leads to fully fine martensite formation after water quenching.

Keywords:
Rapid heating,Non-equilibrium microstructure,Mechanical properties,Strengthening mechanisms

Affiliations:
Chang S. - Harbin Institiute of Technology (CN)
Wang K. - Imperial College London (GB)
Wang B. - other affiliation
Kopeć M. - IPPT PAN
Li Z. - other affiliation
Wang L. - Imperial College London (GB)
Liu G. - Harbin Institiute of Technology (CN)

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024