1. |
Jain A., Manippady S., Tang R.♦, Nishihara H.♦, Sobczak K.♦, Matejka V.♦, Michalska M.♦, Vanadium oxide nanorods as an electrode material for solid state supercapacitor,
Scientific Reports, ISSN: 2045-2322, DOI: 10.1038/s41598-022-25707-z, Vol.12, No.21024, pp.1-12, 2022Abstract: The electrochemical properties of metal oxides are very attractive and fascinating in general, making them a potential candidate for supercapacitor application. Vanadium oxide is of particular interest because it possesses a variety of valence states and is also cost effective with low toxicity and a wide voltage window. In the present study, vanadium oxide nanorods were synthesized using a modified sol–gel technique at low temperature. Surface morphology and crystallinity studies were carried out by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy analysis. To the best of our knowledge, the as-prepared nanorods were tested with magnesium ion based polymer gel electrolyte for the first time. The prepared supercapacitor cell exhibits high capacitance values of the order of ~ 141.8 F g−1 with power density of ~ 2.3 kW kg−1 and energy density of ~ 19.1 Wh kg−1. The cells show excellent rate capability and good cycling stability. Affiliations:
Jain A. | - | IPPT PAN | Manippady S. | - | IPPT PAN | Tang R. | - | other affiliation | Nishihara H. | - | other affiliation | Sobczak K. | - | other affiliation | Matejka V. | - | other affiliation | Michalska M. | - | Łukasiewicz Research Network‒Institute of Electronic Materials Technology (PL) |
| |