Abstract:
We prove an averaging principle which asserts convergence of diffusion processes on domains separated by semi-permeable membranes, when diffusion coefficients tend to infinity while the flux through the membranes remains constant. In the limit, points in each domain are lumped into a single state of a limit Markov chain. The limit chain's intensities are proportional to the membranes' permeability and inversely proportional to the domains' sizes. Analytically, the limit is an example of a singular perturbation in which boundary and transmission conditions play a crucial role. This averaging principle is strongly motivated by recent signaling pathways models of mathematical biology, which are discussed toward the end of the paper.
Keywords:
Convergence of sectorial forms and of semigroups of operators, diffusion processes, boundary and transmission conditions, Freidlin–Wentzell averaging principle, singular perturbations, signaling pathways, kinase activity, intracellular calcium dynamics, neurotransmitters
Affiliations:
Bobrowski A. | - | Lublin University of Technology (PL) |
Kaźmierczak B. | - | IPPT PAN |
Kunze M. | - | University of Konstanz (DE) |