Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

A. Gadomska‐Gajadhur


Recent publications
1.  Gadomska‐Gajadhur A., Kruk A., Dulnik J., Chwojnowski A., New polyester biodegradable scaffolds for chondrocyte culturing: preparation, properties, and biological activity, JOURNAL OF APPLIED POLYMER SCIENCE, ISSN: 0021-8995, DOI: 10.1002/app.50089, pp.e50089-1-14, 2020

Abstract:
An innovative modification of the wet inversion phase method, consisting in the use of a polymer nano‐nonwoven as a nonclassic pore precursor. Mechanical properties of the obtained scaffolds were determined, their hydrophilic properties (serum absorbability) were tested, and the content of residues of materials used in the scaffold preparation was determined. Nontoxicity of the developed scaffolds toward T lymphocyte cells was proved. Cultures of primary chondrocytes were obtained successfully. It was proved that an addition of a polymer nano‐nonwoven changes the properties of the scaffolds favorably in respect of their subsequent application in tissue engineering.

Keywords:
cartilage regeneration, chondrocytes, nano-nonwoven, polyvinylpyrrolidone, T lymphocytes

Affiliations:
Gadomska‐Gajadhur A. - other affiliation
Kruk A. - Warsaw University of Technology (PL)
Dulnik J. - IPPT PAN
Chwojnowski A. - Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL)
2.  Gadomska‐Gajadhur A., Kruk A., Ruśkowski P., Sajkiewicz P., Dulnik J., Chwojnowski A., Original method of imprinting pores in scaffolds for tissue engineering, Polymers for Advanced Technologies, ISSN: 1042-7147, DOI: 10.1002/pat.5091, pp.1-13, 2020

Abstract:
Results of the preparation of biodegradable porous scaffolds using an original modification of a wet phase inversion method were presented. Influence of gelatin non‐woven as a non‐classic pore precursor and polyvinylpyrrolidone, Pluronic as classic pore precursors on the structure of obtained scaffolds was analyzed. It was shown that the addition of gelatin non‐wovens enables the preparation of scaffolds, which allow for the growth of cells (size, distribution, and shape of pores). Mechanical properties of the obtained cell scaffolds were determined. The influence of pore precursors on mass absorption of scaffolds against isopropanol and plasma was investigated. Interaction of scaffolds with a T‐lymphocyte line (Jurkat) and with fibroblasts (L929) was investigated. Obtained scaffolds are not cytotoxic and can be used as implants, for example, the regeneration of cartilage tissue.

Keywords:
cell cultures, cytotoxic, fibroblasts, imprinted scaffolds

Affiliations:
Gadomska‐Gajadhur A. - other affiliation
Kruk A. - Warsaw University of Technology (PL)
Ruśkowski P. - Warsaw University of Technology (PL)
Sajkiewicz P. - IPPT PAN
Dulnik J. - IPPT PAN
Chwojnowski A. - Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL)

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024