Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Keith Johnston

University of Dundee (GB)

Recent publications
1.  Johnston K., Tapia-Siles C., Gerold B., Postema M., Cochran S., Cuschieri A., Prentice P., Periodic shock-emission from acoustically driven cavitation clouds: A source of the subharmonic signal, Ultrasonics, ISSN: 0041-624X, DOI: 10.1016/j.ultras.2014.06.011, Vol.54, pp.2151-2158, 2014

Abstract:
Single clouds of cavitation bubbles, driven by 254 kHz focused ultrasound at pressure amplitudes in the range of 0.48–1.22 MPa, have been observed via high-speed shadowgraphic imaging at 1 × 106 frames per second. Clouds underwent repetitive growth, oscillation and collapse (GOC) cycles, with shock-waves emitted periodically at the instant of collapse during each cycle. The frequency of cloud collapse, and coincident shock-emission, was primarily dependent on the intensity of the focused ultrasound driving the activity. The lowest peak-to-peak pressure amplitude of 0.48 MPa generated shock-waves with an average period of 7.9 ± 0.5 μs, corresponding to a frequency of f0/2, half-harmonic to the fundamental driving. Increasing the intensity gave rise to GOC cycles and shock-emission periods of 11.8 ± 0.3, 15.8 ± 0.3, 19.8 ± 0.2 μs, at pressure amplitudes of 0.64, 0.92 and 1.22 MPa, corresponding to the higher-order subharmonics of f0/3, f0/4 and f0/5, respectively. Parallel passive acoustic detection, filtered for the fundamental driving, revealed features that correlated temporally to the shock-emissions observed via high-speed imaging, p(two-tailed) < 0.01 (r = 0.996, taken over all data). Subtracting the isolated acoustic shock profiles from the raw signal collected from the detector, demonstrated the removal of subharmonic spectral peaks, in the frequency domain. The larger cavitation clouds (>200 μm diameter, at maximum inflation), that developed under insonations of peak-to-peak pressure amplitudes >1.0 MPa, emitted shock-waves with two or more fronts suggesting non-uniform collapse of the cloud. The observations indicate that periodic shock-emissions from acoustically driven cavitation clouds provide a source for the cavitation subharmonic signal, and that shock structure may be used to study intra-cloud dynamics at sub-microsecond timescales.

Keywords:
Acoustic cavitation, Subharmonic, Cloud dynamics, Collapse, Shock-wave

Affiliations:
Johnston K. - University of Dundee (GB)
Tapia-Siles C. - University of Dundee (GB)
Gerold B. - University of Dundee (GB)
Postema M. - other affiliation
Cochran S. - University of Dundee (GB)
Cuschieri A. - University of Dundee (GB)
Prentice P. - University of Dundee (GB)

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024