1. |
Johnston K.♦, Tapia-Siles C.♦, Gerold B.♦, Postema M.♦, Cochran S.♦, Cuschieri A.♦, Prentice P.♦, Periodic shock-emission from acoustically driven cavitation clouds: A source of the subharmonic signal,
Ultrasonics, ISSN: 0041-624X, DOI: 10.1016/j.ultras.2014.06.011, Vol.54, pp.2151-2158, 2014Abstract: Single clouds of cavitation bubbles, driven by 254 kHz focused ultrasound at pressure amplitudes in the range of 0.48–1.22 MPa, have been observed via high-speed shadowgraphic imaging at 1 × 106 frames per second. Clouds underwent repetitive growth, oscillation and collapse (GOC) cycles, with shock-waves emitted periodically at the instant of collapse during each cycle. The frequency of cloud collapse, and coincident shock-emission, was primarily dependent on the intensity of the focused ultrasound driving the activity. The lowest peak-to-peak pressure amplitude of 0.48 MPa generated shock-waves with an average period of 7.9 ± 0.5 μs, corresponding to a frequency of f0/2, half-harmonic to the fundamental driving. Increasing the intensity gave rise to GOC cycles and shock-emission periods of 11.8 ± 0.3, 15.8 ± 0.3, 19.8 ± 0.2 μs, at pressure amplitudes of 0.64, 0.92 and 1.22 MPa, corresponding to the higher-order subharmonics of f0/3, f0/4 and f0/5, respectively. Parallel passive acoustic detection, filtered for the fundamental driving, revealed features that correlated temporally to the shock-emissions observed via high-speed imaging, p(two-tailed) < 0.01 (r = 0.996, taken over all data). Subtracting the isolated acoustic shock profiles from the raw signal collected from the detector, demonstrated the removal of subharmonic spectral peaks, in the frequency domain. The larger cavitation clouds (>200 μm diameter, at maximum inflation), that developed under insonations of peak-to-peak pressure amplitudes >1.0 MPa, emitted shock-waves with two or more fronts suggesting non-uniform collapse of the cloud. The observations indicate that periodic shock-emissions from acoustically driven cavitation clouds provide a source for the cavitation subharmonic signal, and that shock structure may be used to study intra-cloud dynamics at sub-microsecond timescales. Keywords: Acoustic cavitation, Subharmonic, Cloud dynamics, Collapse, Shock-wave Affiliations:
Johnston K. | - | University of Dundee (GB) | Tapia-Siles C. | - | University of Dundee (GB) | Gerold B. | - | University of Dundee (GB) | Postema M. | - | other affiliation | Cochran S. | - | University of Dundee (GB) | Cuschieri A. | - | University of Dundee (GB) | Prentice P. | - | University of Dundee (GB) |
| |
2. |
Gerold B.♦, Kotopoulis S.♦, McDougall C.♦, McGloin D.♦, Postema M.♦, Prentice P.♦, Laser-nucleated acoustic cavitation in focused ultrasound,
REVIEW OF SCIENTIFIC INSTRUMENTS, ISSN: 0034-6748, DOI: 10.1063/1.3579499, Vol.82, pp.044902-1-9, 2011Abstract: Acoustic cavitation can occur in therapeutic applications of high-amplitude focused ultrasound. Studying acoustic cavitation has been challenging, because the onset of nucleation is unpredictable. We hypothesized that acoustic cavitation can be forced to occur at a specific location using a laser to nucleate a microcavity in a pre-established ultrasound field. In this paper we describe a scientific instrument that is dedicated to this outcome, combining a focused ultrasound transducer with a pulsed laser. We present high-speed photographic observations of laser-induced cavitation and laser- nucleated acoustic cavitation, at frame rates of 0.5×106 frames per second, from laser pulses of energy above and below the optical breakdown threshold, respectively. Acoustic recordings demonstrated inertial cavitation can be controllably introduced to the ultrasound focus. This technique will contribute to the understanding of cavitation evolution in focused ultrasound including for potential therapeutic applications. Keywords: Laser-nucleated acoustic cavitation, focussed ultrasound Affiliations:
Gerold B. | - | University of Dundee (GB) | Kotopoulis S. | - | Haukeland University Hospital (NO) | McDougall C. | - | other affiliation | McGloin D. | - | other affiliation | Postema M. | - | other affiliation | Prentice P. | - | University of Dundee (GB) |
| |