Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Maria Wiśniewska

Łukasiewicz Research Network – Metal Forming Institute (PL)

Recent publications
1.  Psiuk R., Chrzanowska-Giżyńska J., Denis P., Wyszkowska E., Wiśniewska M., Lipińska M., Wojtiuk E., Kurpaska Ł., Smolik J., Mościcki T. P., Microstructural and properties investigations of tantalum-doped tungsten diboride ceramic coatings via HiPIMS and RF magnetron sputtering, ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, ISSN: 1644-9665, DOI: 10.1007/s43452-024-01050-0, Vol.24, No.239, pp.1-16, 2024

Abstract:
In this work, tantalum-doped tungsten boride ceramic coatings were deposited from a single sputtering target with the radio frequency (RF) and high-power impulse magnetron sputtering (HiPIMS) methods. Two-inch torus targets were synthesised from pure elements with the spark plasma sintering (SPS) method with a stoichiometric composition of W1-xTaxB2.5 (x = 0, 0.08, 0.16, 0.24). Films were deposited with RF and HiPIMS power suppliers at process temperatures from RT to 600 °C. The substrate heating and the energy of the ionised material impacting the substrate increase the surface diffusivity of adatoms and are crucial in the deposition process. The results of SEM and XRD investigations clearly show that the addition of tantalum also changes the microstructure of the deposited films. The coatings without tantalum possess a finer microstructure than those with 24% of tantalum. The structure of films is homogeneous along the film thickness and composed mainly of columns with a (0001) preferred orientation. Deposited coatings are composed mainly of P6/mmm α-WB2 structures. The analysis of nanoindentation results allowed us to determine that ceramic coatings obtained with the HiPIMS method possess hardness above 41 GPa and a ratio of hardness to reduced Young modulus above 0.1. The thickness of HiPIMS-deposited films is relatively small: only around 60% of the RF magnetron sputtered coatings even when the average power input was two times higher. However, it has been shown that the RF coatings require heating the substrate above 400 °C to obtain a crystalline structure, while the HiPIMS method allows for a reduction of the substrate temperature to 300 °C.

Keywords:
RF magnetron sputtering, HiPIMS magnetron sputtering, Superhard ceramic coatings, Transition metal borides, Deposition temperature

Affiliations:
Psiuk R. - IPPT PAN
Chrzanowska-Giżyńska J. - other affiliation
Denis P. - IPPT PAN
Wyszkowska E. - National Centre for Nuclear Research (PL)
Wiśniewska M. - Łukasiewicz Research Network – Metal Forming Institute (PL)
Lipińska M. - other affiliation
Wojtiuk E. - other affiliation
Kurpaska Ł. - National Centre for Nuclear Research (PL)
Smolik J. - other affiliation
Mościcki T. P. - IPPT PAN
2.  Mościcki T., Chrzanowska-Giżyńska J., Psiuk R., Denis P., Mulewska K., Kurpaska Ł., Chmielewski M., Wiśniewska M., Garbiec D., Thermal and mechanical properties of (W,Zr)B2-z coatings deposited by RF magnetron sputtering method, International Journal of Refractory Metals and Hard Materials, ISSN: 0263-4368, DOI: 10.1016/j.ijrmhm.2022.105811, Vol.105, pp.105811-1-8, 2022

Abstract:
Magnetron sputtered WB2 coatings doped with 8, 11 and 16 at.% zirconium were analysed using energy dispersive spectroscopy, X-ray diffraction and nanoindentation under the load of 4, 7 and 10 mN. It has been observed that these coatings crystallize in the α-AlB2 and ω-W2B5 prototype structure. Phenomenon responsible for this is an increase of the zirconium content which causes an increase in the ω-W2B5 phase. All the deposited coatings have a hardness of about 45 GPa while Young's modulus drops down from 497 to 480 GPa with increasing zirconium content. Coatings without doping and doped with 16 at.% zirconium were annealed at 650 °C and subjected to cyclic thermal loads using a maximum temperature 600 °C and cooling with a compressed air. It has been observed that addition of zirconium improved coatings phase stability.

Keywords:
superhard coatings, tungsten diboride, zirconia doping, magnetron sputtering, cycling thermal loads, annealing

Affiliations:
Mościcki T. - IPPT PAN
Chrzanowska-Giżyńska J. - IPPT PAN
Psiuk R. - IPPT PAN
Denis P. - IPPT PAN
Mulewska K. - National Centre for Nuclear Research (PL)
Kurpaska Ł. - National Centre for Nuclear Research (PL)
Chmielewski M. - Institute of Electronic Materials Technology (PL)
Wiśniewska M. - Łukasiewicz Research Network – Metal Forming Institute (PL)
Garbiec D. - Metal Forming Institute, Poznań (PL)
3.  Garbiec D., Wiśniewska M., Psiuk R., Denis P., Levintant-Zayonts N., Leshchynsky V., Rubach R., Mościcki T., Zirconium alloyed tungsten borides synthesized by spark plasma sintering, ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, ISSN: 1644-9665, DOI: 10.1007/s43452-021-00188-5, Vol.21, pp.37-1-15, 2021

Abstract:
Tungsten borides (WBx; x = 2.5 or 4.5) with an increasing substitution of tungsten by zirconium from 0 to 24 at.% were synthesized by spark plasma sintering (SPS) for the first time. The influence of the holding time (2.5–30 min) on the densification behavior, microstructure evolution and development of the properties of W–Zr–B compounds were studied. The samples were characterized using scanning electron microscopy (SEM) for microstructure analysis, X-ray diffraction (XRD) for phase identification, Vickers micro-indentation for microhardness measurements, tribological tests to determine the coefficient of friction and specific wear rate, as well as measurements of electrical conductivity. The XRD results confirm the presence of the WB4 phase in the microstructure, despite the high sintering temperature (1800 °C) and small overstoichiometric excess of boron (4.5) addition in the sintered samples. This is caused by the high heating rate (400 °C/min), short holding time (2.5 min) and addition of zirconium. The Vickers hardness (HV) values measured at 1 N are 24.8 ± 2.0 and 26.6 ± 1.8 GPa for 24 at.% zirconium in WB2.5 and for 0 at.% zirconium in WB4.5, respectively. In addition, the hardest sample (W0.76Zr0.24B2.5) showed electrical conductivity up to 3.961·10^6 S/m, which is similar to WC–Co cemented carbides. The friction and wear test results reveal the formation of a boron-based film which seems to play the role of a solid lubricant.

Affiliations:
Garbiec D. - Metal Forming Institute, Poznań (PL)
Wiśniewska M. - Łukasiewicz Research Network – Metal Forming Institute (PL)
Psiuk R. - IPPT PAN
Denis P. - IPPT PAN
Levintant-Zayonts N. - IPPT PAN
Leshchynsky V. - other affiliation
Rubach R. - other affiliation
Mościcki T. - IPPT PAN
4.  Mościcki T., Psiuk R., Radziejewska J., Wiśniewska M., Garbiec D., Properties of spark plasma sintered compacts and magnetron sputtered coatings made from Cr, Mo, Re and Zr alloyed tungsten diboride, Coatings, ISSN: 2079-6412, DOI: 10.3390/coatings11111378, Vol.11, No.11, pp.1378-1-15, 2021

Abstract:
To enhance the properties of tungsten diboride, we have synthesized and characterized solid solutions of this material with chromium, molybdenum, rhenium and zirconium. The obtained materials were subsequently deposited as coatings. Various concentrations of these transition metal elements, ranging from 0.0 to 24.0 at.%, on a metals basis, were made. Spark plasma sintering was used to synthesize these refractory compounds from the pure elements. Elemental and phase purity of both samples (sintered compacts and coatings) were examined using energy dispersive X-ray spectroscopy and X-ray diffraction. Microindentation was utilized to measure the Vickers hardness. X-ray diffraction results indicate that the solubility limit is below 8 at.% for Mo, Re and Zr and below 16 at.% for Cr. Above this limit both diborides (W,TM)B2 are created. Addition of transition metals caused decrease of density and increase of hardness and electrical conductivity of sintered compacts. Deposited coatings W1−xTMxBy (TM = Cr, Mo, Re, Zr; x = 0.2; y = 1.7–2) are homogenous, smooth and hard. The maximal hardness was measured for W-Cr-B films and under the load of 10 g was 50.4 ± 4.7 GPa. Deposited films possess relatively high fracture toughness and for WB2 coatings alloyed with zirconium it is K1c = 2.11 MPa m^1/2.

Keywords:
ternary tungsten boride, spark plasma sintering, magnetron sputtering, electrical conductivity

Affiliations:
Mościcki T. - IPPT PAN
Psiuk R. - IPPT PAN
Radziejewska J. - other affiliation
Wiśniewska M. - Łukasiewicz Research Network – Metal Forming Institute (PL)
Garbiec D. - Metal Forming Institute, Poznań (PL)

Conference abstracts
1.  Psiuk R., Wiśniewska M., Garbiec D., Mościcki T., Properties of coatings and SPS sinters made of tungsten diboride alloyed with Ti, Cr, Mo, Re and Zr, PLASMA TECH, Plasma Processing and Technology, 2022-04-27/04-29, Barcelona (ES), pp.15, 2022

Keywords:
tungsten boride, superhard materials, spark plasma sintering SPS, magnetron sputtering

Affiliations:
Psiuk R. - IPPT PAN
Wiśniewska M. - Łukasiewicz Research Network – Metal Forming Institute (PL)
Garbiec D. - Metal Forming Institute, Poznań (PL)
Mościcki T. - IPPT PAN
2.  Psiuk R., Wiśniewska M., Garbiec D., Mościcki T., Properties of spark plasma sintered bulks and coatings made of tungsten diboride alloyed with Cr, Mo, Re and Zr, The 1st Conference on FAST/SPS: From Research to Industry, 2021-10-25/10-26, Poznań (PL), pp.38, 2021
3.  Psiuk R., Wiśniewska M., Garbiec D., Mościcki T., Spiekanie iskrowo-plazmowe SPS borków wolframu z dodatkiem cyrkonu / Spark plasma sintering of zirconium alloyed tungsten borides, III Ogólnopolskie Seminarium Spark Plasma Sintering / III National Workshop on Spark Plasma Sintering, 2020-10-23/10-23, Kraków (PL), pp.25-26, 2020
4.  Psiuk R., Garbiec D., Wiśniewska M., Denis P., Mościcki T., Mikrostruktura i właściwości borków wolframu domieszkowanych cyrkonem wytwarzanych metodą spiekania iskrowo-plazmowego SPS, OSSPS, II Ogólnopolskie Seminarium Spark Plasma Sintering, 2019-10-24/10-24, Warszawa (PL), pp.20-20, 2019

Patents
Filing No./Date
Filing Publication
Autors
Title
Protection Area, Applicant Name
Patent Number
Date of Grant
pdf
PCT/PL2023/000046
2023-08-31
-
-
Garbiec D., Wiśniewska M., Mościcki T. P., Smolik J., Polak S.
A method for the manufacturing of a multi-component target for magnetron sputtering, a set of tools for the manufacturing of a multi-component target for magnetron sputtering, and the sputtering target with its application for the deposition of protective coating
WO, Sieć Badawcza Łukasiewicz – Poznański Instytut Technologiczny, Instytut Podstawowych Problemów Techniki PAN, Sieć Badawcza Łukasiewicz – Instytut Technologii Eksploatacji, Politechnika Wrocławska
-
-
-
445255
2023-06-17
BUP 52/2024
2024-12-23
Garbiec D., Wiśniewska M., Mościcki T. P., Smolik J., Polak S.
Sposób wytwarzania wieloskładnikowej tarczy do rozpylania magnetronowego i zestaw narzędziowy do wytwarzania wieloskładnikowej tarczy oraz wieloskładnikowa tarcza magnetronowa i jej zastosowanie do wytwarzania powłoki ochronnej
PL, Sieć Badawcza Łukasiewicz – Poznański Instytut Technologiczny, Instytut Podstawowych Problemów Techniki PAN, Sieć Badawcza Łukasiewicz – Instytut Technologii Eksploatacji, Politechnika Wrocławska
-
-
-

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024