Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Siewert J. Marrink


Recent publications
1.  Cofas Vargas L. F., Olivos-Ramirez G. E., Chwastyk M., Moreira R.A., Baker J. L., Marrink S. J., Poma Bernaola A.M., Nanomechanical footprint of SARS-CoV-2 variants in complex with a potent nanobody by molecular simulations, NANOSCALE, ISSN: 2040-3364, DOI: 10.1039/D4NR02074J, Vol.16, No.40, pp.18824-18834, 2024

Abstract:
Rational design of novel antibody therapeutics against viral infections such as coronavirus relies on surface complementarity and high affinity for their effectiveness. Here, we explore an additional property of protein complexes, the intrinsic mechanical stability, in SARS-CoV-2 variants when complexed with a potent antibody. In this study, we utilized a recent implementation of the GōMartini 3 approach to investigate large conformational changes in protein complexes with a focus on the mechanostability of the receptor-binding domain (RBD) from WT, Alpha, Delta, and XBB.1.5 variants in complex with the H11-H4 nanobody. The analysis revealed moderate differences in mechanical stability among these variants. Also, we identified crucial residues in both the RBD and certain protein segments in the nanobody that contribute to this property. By performing pulling simulations and monitoring the presence of specific native and non-native contacts across the protein complex interface, we provided mechanistic insights into the dissociation process. Force-displacement profiles indicate a tensile force clamp mechanism associated with the type of protein complex. Our computational approach not only highlights the key mechanostable interactions that are necessary to maintain overall stability, but it also paves the way for the rational design of potent antibodies that are mechanostable and effective against emergent SARS-CoV-2 variants.

Keywords:
SARS-CoV-2, GōMartini 3, Nanomechanics, Protein complexes, protein engineering, MD, native contacts

Affiliations:
Cofas Vargas L. F. - IPPT PAN
Olivos-Ramirez G. E. - IPPT PAN
Chwastyk M. - Institute of Physics, Polish Academy of Sciences (PL)
Moreira R.A. - other affiliation
Baker J. L. - The College of New Jersey (US)
Marrink S. J. - other affiliation
Poma Bernaola A.M. - IPPT PAN

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024