Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Ewa Kublik


Recent publications
1.  Rinoldi C., Ziai Y., Zargarian S.S., Nakielski P., Zembrzycki K., Haghighat Bayan M.A., Zakrzewska A., Fiorelli R., Lanzi M., Kostrzewska-Księżyk A., Czajkowski R., Kublik E., Kaczmarek L., Pierini F., In Vivo Chronic Brain Cortex Signal Recording Based on a Soft Conductive Hydrogel Biointerface, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.2c17025, Vol.15, No.5, pp.6283-6296, 2023

Abstract:
In neuroscience, the acquisition of neural signals from the brain cortex is crucial to analyze brain processes, detect neurological disorders, and offer therapeutic brain–computer interfaces. The design of neural interfaces conformable to the brain tissue is one of today’s major challenges since the insufficient biocompatibility of those systems provokes a fibrotic encapsulation response, leading to an inaccurate signal recording and tissue damage precluding long-term/permanent implants. The design and production of a novel soft neural biointerface made of polyacrylamide hydrogels loaded with plasmonic silver nanocubes are reported herein. Hydrogels are surrounded by a silicon-based template as a supporting element for guaranteeing an intimate neural-hydrogel contact while making possible stable recordings from specific sites in the brain cortex. The nanostructured hydrogels show superior electroconductivity while mimicking the mechanical characteristics of the brain tissue. Furthermore, in vitro biological tests performed by culturing neural progenitor cells demonstrate the biocompatibility of hydrogels along with neuronal differentiation. In vivo chronic neuroinflammation tests on a mouse model show no adverse immune response toward the nanostructured hydrogel-based neural interface. Additionally, electrocorticography acquisitions indicate that the proposed platform permits long-term efficient recordings of neural signals, revealing the suitability of the system as a chronic neural biointerface.

Keywords:
brain−machine interface,conductive hydrogels,nanostructured biomaterials,in vitro and in vivo biocompatibility,long-term neural recording

Affiliations:
Rinoldi C. - IPPT PAN
Ziai Y. - IPPT PAN
Zargarian S.S. - IPPT PAN
Nakielski P. - IPPT PAN
Zembrzycki K. - IPPT PAN
Haghighat Bayan M.A. - IPPT PAN
Zakrzewska A. - IPPT PAN
Fiorelli R. - IPPT PAN
Lanzi M. - University of Bologna (IT)
Kostrzewska-Księżyk A. - other affiliation
Czajkowski R. - other affiliation
Kublik E. - other affiliation
Kaczmarek L. - other affiliation
Pierini F. - IPPT PAN

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024