1. |
Ortiz A.R.♦, Błachowski B., Hołobut P., Franco J.M.♦, Marulanda J.♦, Thomson P.♦, Modeling and Measurement of a Pedestrian's Center-of-Mass Trajectory,
35th IMAC, XXXV International Modal Analysis Conference, A Conference and Exposition on Structural Dynamics 2017, 2017-01-30/02-02, Garden Grove, CA. (US), DOI: 10.1007/978-3-319-54777-0_20, Vol.2, pp.159-167, 2017Abstract: This paper presents the measurement and model updating of a pedestrian's center of mass trajectory. A mathematical model proposed by the authors is updated using the actual trajectory of a pedestrian. The mathematical model is based on the principle that a human's control capability tries to maintain balance with respect to the pedestrian's center of mass (CoM), independently of the surface type. In this research, the human is considered as a mass point concentrated at CoM. The parameters of the models are updated using experimental identification of the human walking trajectory on a rigid surface. The proposed measurement technique uses a depth sensor, which enable skeletal tracking of the pedestrian walking on rigid or flexible structures. Experiments were performed using a mobile platform with the time-of-flight commercial camera Microsoft Kinect for Windows 2.0. The velocity of the mobile platform is set to maintain a 1 m separation from the pedestrian in order to provide high resolution. The results of the measurement technique allowed the identification of the human's CoM trajectory. The results of the model updating process present the probability density function of the parameters which could be used for modeling the CoM's trajectory of the pedestrian. Keywords: Human-structure interaction, Pedestrian's trajectory, Human-induced vibrations, MS Kinect sensor Affiliations:
Ortiz A.R. | - | Universidad del Norte (CO) | Błachowski B. | - | IPPT PAN | Hołobut P. | - | IPPT PAN | Franco J.M. | - | Universidad del Valle (CO) | Marulanda J. | - | Universidad del Valle (CO) | Thomson P. | - | Universidad del Valle (CO) |
| |