1. |
Nwaji N., Fikadu B.♦, Osial M., Moazzami Goudarzi Z., Asgaran S.♦, Teshome Tufa L.♦, Lee J.♦, Giersig M., Disentangling the catalytic origin in defect engineered 2D NiCoMoS@Ni(CN)2 core-shell heterostructure for energy-saving hydrazine-assisted water oxidation,
International Journal of Hydrogen Energy, ISSN: 0360-3199, DOI: 10.1016/j.ijhydene.2024.08.432, Vol.86, pp.554-563, 2024Abstract: The major hindrance to efficient electrocatalytic hydrogen generation from water electrolysis is the sluggish kinetics with corresponding large overvoltage of oxygen evolution reaction. Herein, we report a defective 2D NiCoMoS@Ni(CN)2 core-shell heterostructure derived from Hofmann-type MOF as an efficient and durable high-performance noble metal-free electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media. The sluggish oxygen evolution reaction was replaced with a more thermodynamically favourable HzOR, enabling energy-saving electrochemical hydrogen production with 2D NiCoMoS@Ni(CN)2 acting as a bifunctional electrocatalyst for anodic HzOR and cathodic hydrogen generation. Operating at room temperature, the two-electrode electrolyzer delivers 100 mA cm−2 from a cell voltage of just 257 mV, with strong long-term electrochemical durability and nearly 100% Faradaic efficiency for hydrogen evolution in 1.0 M KOH aqueous solution with 0.5 M hydrazine. The density functional theory (DFT) was employed to investigate the origin of catalytic performance and showed that high vacancy creation within the heterointerface endowed NiCoMoS@Ni(CN)2 with favourable functionalities for excellent catalytic performance. Keywords: Defect engineering, Core-shell, Electrocatalyst, Hydrazine oxidation, Heterostructure Affiliations:
Nwaji N. | - | IPPT PAN | Fikadu B. | - | other affiliation | Osial M. | - | IPPT PAN | Moazzami Goudarzi Z. | - | IPPT PAN | Asgaran S. | - | other affiliation | Teshome Tufa L. | - | other affiliation | Lee J. | - | Lexington High School (US) | Giersig M. | - | IPPT PAN |
| |