1. |
Nthunya Lebea N.♦, Kok Chung C.♦, Soon Onn L.♦, Woei Jye L.♦, Eduardo Alberto L.♦, Lucy Mar C.♦, Shirazi Mohammad Mahdi A.♦, Aamer A.♦, Mamba Bhekie B.♦, Osial M., Pietrzyk-Thel P., Pręgowska A., Mahlangu Oranso T.♦, Progress in membrane distillation processes for dye wastewater treatment: A review,
Chemosphere, ISSN: 0045-6535, DOI: 10.1016/j.chemosphere.2024.142347, pp.1-104, 2024Abstract: Textile and cosmetic industries generate large amounts of dye effluents requiring treatment before discharge. This wastewater contains high levels of reactive dyes, low to none-biodegradable materials and chemical residues. Technically, dye wastewater is characterised by high chemical and biological oxygen demand. Biological, physical and pressure-driven membrane processes have been extensively used in textile wastewater treatment plants. However, these technologies are characterised by process complexity and are often costly. Also, process efficiency is not achieved in cost-effective biochemical and physical treatment processes. Membrane distillation (MD) emerged as a promising technology harnessing challenges faced by pressure-driven membrane processes. To ensure high cost-effectiveness, the MD can be operated by solar energy or low-grade waste heat. Herein, the MD purification of dye wastewater is comprehensively and yet concisely discussed. This involved research advancement in MD processes towards removal of dyes from industrial effluents. Also, challenges faced by this process with a specific focus on fouling are reviewed. Current literature mainly tested MD setups in the laboratory scale suggesting a deep need of further optimization of membrane and module designs in near future, especially for textile wastewater treatment. There is a need to deliver customized high-porosity hydrophobic membrane design with the appropriate thickness and module configuration to reduce concentration and temperature polarization. Also, energy loss should be minimized while increasing dye rejection and permeate flux. Although laboratory experiments remain pivotal in optimizing the MD process for treating dye wastewater, their time-intensive nature poses a challenge. Given the multitude of parameters involved in MD process optimization, artificial intelligence (AI) methodologies present a promising avenue for assistance. Thus, AI-driven algorithms have the potential to enhance overall process efficiency, cutting down on time, fine-tuning parameters, and driving cost reductions. However, achieving an optimal balance between efficiency enhancements and financial outlays is a complex process. Finally, this paper suggests a research direction for the development of effective synthetic and natural dye removal from industrially discharged wastewater. Keywords: Energy Consumption,Dye Effluent,Fouling,Heat and Mass Transfer,Membrane and Module Design Affiliations:
Nthunya Lebea N. | - | other affiliation | Kok Chung C. | - | other affiliation | Soon Onn L. | - | other affiliation | Woei Jye L. | - | other affiliation | Eduardo Alberto L. | - | other affiliation | Lucy Mar C. | - | other affiliation | Shirazi Mohammad Mahdi A. | - | other affiliation | Aamer A. | - | other affiliation | Mamba Bhekie B. | - | other affiliation | Osial M. | - | IPPT PAN | Pietrzyk-Thel P. | - | IPPT PAN | Pręgowska A. | - | IPPT PAN | Mahlangu Oranso T. | - | other affiliation |
| |
2. |
Pietrzyk-Thel P., Jain A., Bochenek K., Michalska M.♦, Basista M. A., Szabo T.♦, Nagy P.♦, Wolska A.♦, Klepka M.♦, Flexible, tough and high-performing ionogels for supercapacitor application,
Journal of Materiomics, ISSN: 2352-8478, DOI: 10.1016/j.jmat.2024.01.008, pp.1-41, 2024Abstract: Ionogels are an attractive class of materials for smart and flexible electronics and are prepared from the combination of a polymer and ionic liquid which is entrapped in this matrix. Ionogels provide a continuous conductive phase with high thermal, mechanical, and chemical stability. However, because of the higher percentage of ionic liquids it is difficult to obtain an ionogel with high ionic conductivity and mechanical stability, which are very important from an application point of view. In this work, ionogel films with high flexibility, excellent ionic conductivity, and exceptional stability were prepared using polyvinyl alcohol as the host polymer matrix and 1-ethyl-3-methylimidazolium hydrogen sulfate as the ionic liquid using water as the solvent for energy storage application. The prepared ionogel films exhibited good mechanical stability along with sustaining strain of more than 100% at room temperature and low temperature, the ability to withstand twisting up to 360° and different bending conditions, and excellent ionic conductivity of 5.12 × 10−3 S/cm. The supercapacitor cell fabricated using the optimized ionogel film showed a capacitance of 39.9 F/g with an energy and power densities of 5.5 Wh/kg and 0.3 kW/kg, respectively confirming the suitability of ionogels for supercapacitor application. Keywords: Ionic liquid, Gel polymer electrolyte, Ionic conductivity, 1-Ethyl-3-methylimidazolium hydrogen sulfate, Supercapacitors Affiliations:
Pietrzyk-Thel P. | - | IPPT PAN | Jain A. | - | IPPT PAN | Bochenek K. | - | IPPT PAN | Michalska M. | - | Łukasiewicz Research Network‒Institute of Electronic Materials Technology (PL) | Basista M. A. | - | IPPT PAN | Szabo T. | - | other affiliation | Nagy P. | - | other affiliation | Wolska A. | - | other affiliation | Klepka M. | - | other affiliation |
| |
3. |
Witecka A., Pietrzyk-Thel P., Krajewski M., Sobczak K.♦, Wolska A.♦, Jain A., Preparation of activated carbon/iron oxide/chitosan electrodes for symmetric supercapacitor using electrophoretic deposition: A facile, fast and sustainable approach,
JOURNAL OF ALLOYS AND COMPOUNDS, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2024.174040, Vol.985, No.174040, pp.1-15, 2024Abstract: In this research, electrophoretic deposition (EPD) was employed to prepare a porous composite film (ACF electrode) consisting of 90 wt% activated carbon particles, 10 wt% iron oxide nanoparticles, and a chitosan as binder in a facile, fast, and sustainable manner. This micro-mesoporous composite film, with a thickness of ∼45 µm and a surface area of ∼208.1 m2g−1, was coated on a stainless steel substrate. The SEM and TEM investigations proved the homogeneous distribution of carbon microparticles and iron oxide nanoparticles in the deposit, while the EDX, XRD, Raman spectroscopy, and XPS confirmed the chemical composition. ACF electrodes were also used in a symmetric two-electrode cell configuration with a sandwiched gel polymer electrolyte - PVdF(HFP)-PC-Mg(ClO4)2 and revealed a specific capacitance of ∼54.4 F g−1, along with satisfactory energy and power density of ∼4.7 Wh kg−1 and 1.2 kW kg−1, respectively, and excellent electrochemical stability up to ∼10,000 cycles (with merely 8.5% decay by the 5000th cycle). Obtained results confirmed the stability of the used system and its possible application in the field of energy storage and conversion. Affiliations:
Witecka A. | - | IPPT PAN | Pietrzyk-Thel P. | - | IPPT PAN | Krajewski M. | - | IPPT PAN | Sobczak K. | - | other affiliation | Wolska A. | - | other affiliation | Jain A. | - | IPPT PAN |
| |
4. |
Osial M., Ha G.♦, Vu V.♦, Nguyen P.♦, Nieciecka D.♦, Pietrzyk‑Thel P., Urbanek O., Olusegun S.♦, Wilczewski S.♦, Giersig M., Do H.♦, Dinh T.♦, One-pot synthesis of magnetic hydroxyapatite (SPION/HAp) for 5-fluorouracil delivery and magnetic hyperthermia,
Journal of Nanoparticle Research, ISSN: 1388-0764, DOI: 10.1007/s11051-023-05916-x, Vol.26, No.7, pp.1-23, 2024Abstract: This work presents the synthesis and characterization of a composite made of superparamagnetic iron oxide and hydroxyapatite nanoparticles (SPION/HAp) with a well-developed surface for loading anticancer drugs and for use in magnetic hyperthermia and local chemotherapy. The proposed material was obtained by an easy one-pot co-precipitation method with a controlled ratio of SPION to HAp. The morphology was studied by SEM and TEM, indicating rod-like structures for high HAp content in the composite and granule-like structures with increasing SPION. Its crystallinity, elemental composition, and functional groups were determined by X-ray diffraction, EDS, and FT-IR, respectively. The nanocomposite was then stabilized with citrates (CA), polyethylene glycol (PEG), and folic acid (FA) as agents to improve intracellular absorption, while turbidimetric studies confirmed that only citrates effectively stabilized the magnetic carriers to form a colloidal suspension. Subsequently, 5-fluorouracil (5-FU) was loaded into the magnetic carriers and tested in vitro using the L-929 cell line. The studies showed no cytotoxicity of the citrate-stabilized suspension against fibroblasts and some cytotoxicity after 5-FU release. In addition to in vitro studies, the composite was also tested on biomimetic membranes made of DOPC, DOPE, cholesterol, and DOPS lipids using Langmuir trough. The results show that the resulting suspension interacts with biomimetic membranes, while magnetic hyperthermia studies confirm effective heat generation to achieve therapeutic 42–46 °C and improve drug release from magnetic carriers. Keywords: SPION, Hydroxyapatite, Magnetic hyperthermia, Drug delivery, 5-fluorouracil, Biomimetic membranes, Nanostructures, Cancer treatment Affiliations:
Osial M. | - | IPPT PAN | Ha G. | - | other affiliation | Vu V. | - | other affiliation | Nguyen P. | - | other affiliation | Nieciecka D. | - | other affiliation | Pietrzyk‑Thel P. | - | IPPT PAN | Urbanek O. | - | IPPT PAN | Olusegun S. | - | other affiliation | Wilczewski S. | - | other affiliation | Giersig M. | - | IPPT PAN | Do H. | - | other affiliation | Dinh T. | - | other affiliation |
| |
5. |
Michalska M.♦, Pietrzyk-Thel P., Sobczak K.♦, Janssen M.♦, Jain A., Carbon framework modification; an interesting strategy to improve the energy storage and dye adsorption,
Energy Advances, ISSN: 2753-1457, DOI: 10.1039/d4ya00159a, pp.1-13, 2024Abstract: Porous carbons find various applications, including as adsorbents for clean water production and as electrode materials in energy storage devices such as supercapacitors. While supercapacitors reach higher power densities than batteries, they are less widely used, as their energy density is lower. We present a low-temperature wet ultrasonochemical synthesis technique to modify the surface of activated carbon with 1 wt% Cu nanoparticles. We analyzed the modified carbon using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy and confirmed the composite formation by N2 adsorption–desorption isotherms at 77 K. For comparison, we did the same tests on pristine carbon. We used the modified carbon as an electrode material in a homebuilt supercapacitor filled with gel polymer electrolyte and as an absorbent of Malachite green dye. In both applications, the modified carbon performed substantially better than its pristine counterpart. The modified-carbon supercapacitor exhibited a single electrode-specific capacitance of approximately 68.9 F g1. It also demonstrated an energy density of 9.8 W h kg1 and a power density of 1.4 kW kg1. These values represent improvements over the pristine-carbon supercapacitor, with increases of 25.7 F g1 in capacitance, 3.8 W h kg1 in energy density, and 0.5 kW kg1 in power density. After 10 000 charging–discharging cycles, the capacitance of the modified-carbon supercapacitor decreased by approximately 10%, indicating good durability of the material. We found that the modified carbon’s absorbance capacity for Malachite dye is more than that of the pristine carbon; the adsorption capacity value was B153.16 mg g1 for modified carbon with pseudo-second kinetic order, in accordance with the Redlich–Peterson adsorption model. Affiliations:
Michalska M. | - | Łukasiewicz Research Network‒Institute of Electronic Materials Technology (PL) | Pietrzyk-Thel P. | - | IPPT PAN | Sobczak K. | - | other affiliation | Janssen M. | - | other affiliation | Jain A. | - | IPPT PAN |
| |
6. |
Pietrzyk-Thel P., Osial M., Pręgowska A., Abramowicz M.♦, Nguyen Thu P.♦, Urbańska W.♦, Giersig M., SPIONs doped with cobalt from the Li-ion battery acid leaching waste as a photocatalyst for tetracycline degradation - synthesis, characterization, DFT studies, and antibiotic treatment,
Desalination and Water Treatment, ISSN: 1944-3994, DOI: 10.5004/dwt.2023.29795, Vol.305, pp.155-173, 2023Keywords: Spent lithium-ion batteries, LiBs, Acid leaching, SPION, Magnetic nanomaterials, Metals recovery, Superparamagnetic, Waste management, Functional materials Affiliations:
Pietrzyk-Thel P. | - | IPPT PAN | Osial M. | - | IPPT PAN | Pręgowska A. | - | IPPT PAN | Abramowicz M. | - | University of Warsaw (PL) | Nguyen Thu P. | - | other affiliation | Urbańska W. | - | Wroclaw University of Science and Technology (PL) | Giersig M. | - | IPPT PAN |
| |
7. |
Krajewski M., Pietrzyk P., Osial M., Liou S.♦, Kubacki J.♦, Iron–Iron Oxide Core–Shell Nanochains as High-Performance Adsorbents of Crystal Violet and Congo Red Dyes from Aqueous Solutions,
LANGMUIR, ISSN: 0743-7463, DOI: 10.1021/acs.langmuir.3c00967, Vol.39, No.23, pp.8367-8377, 2023Abstract: The main aim of this work was to use the iron–iron oxide nanochains (Fe NCs) as adsorbents of the carcinogenic cationic crystal violet (CV) and anionic Congo red (CR) dyes from water. The investigated adsorbent was prepared by a magnetic-field-induced reduction reaction, and it revealed a typical core–shell structure. It was composed of an iron core covered by a thin Fe3O4 shell (<4 nm). The adsorption measurements conducted with UV–vis spectroscopy revealed that 15 mg of Fe NCs constituted an efficient dose to be used in the CV and CR treatment. The highest effectiveness of CV and CR removal was found for a contact time of 90 min at pH 7 and 150 min at pH 8, respectively. Kinetic studies indicated that the adsorption followed the pseudo-first-order kinetic model. The adsorption process followed the Temkin model for both dyes taking into account the highest value of the R2 coefficient, whereas in the case of CR, the Redlich–Peterson model could be also considered. The maximal adsorption capacity estimated from the Langmuir isotherms for the CV and CR was 778.47 and 348.46 mg g–1, respectively. Based on the Freundlich model, both dyes adsorbed on the Fe NCs through chemisorption, but Coulombic interactions between the dye and adsorbent cannot be excluded in the case of the CV dye. The obtained results proved that the investigated Fe NCs had an excellent adsorption ability for both dye molecules within five cycles of adsorption/desorption, and therefore, they can be considered as a promising material for water purification and environmental applications. Affiliations:
Krajewski M. | - | IPPT PAN | Pietrzyk P. | - | IPPT PAN | Osial M. | - | IPPT PAN | Liou S. | - | University of Maryland (US) | Kubacki J. | - | Silesian University of Technology (PL) |
| |
8. |
Pietrzyk P., Borowska E.♦, Hejduk P.♦, Camargo Cury B.♦, Warczak M.♦, Nguyen Thu P.♦, Pregowska A., Gniadek M.♦, Szczytko J.♦, Wilczewski S.♦, Osial M., Green composites based on volcanic red algae Cyanidiales, cellulose, and coffee waste biomass modified with magnetic nanoparticles for the removal of methylene blue,
Environmental Science and Pollution Research, ISSN: 1614-7499, DOI: 10.1007/s11356-023-26425-3, pp.1-15, 2023 | |
9. |
Pietrzyk P.♦, Phuong N.T.♦, Olusegun S.J.♦, Nam N.H.♦, Thanh D.T.M.♦, Giersig M., Krysiński P.♦, Osial M., Titan Yellow and Congo Red Removal with Superparamagnetic Iron-Oxide-Based Nanoparticles Doped with Zinc,
MAGNETOCHEMISTRY, ISSN: 2312-7481, DOI: 10.3390/magnetochemistry8080091, Vol.8, No.91, pp.1-24, 2022Abstract: In this work, we present magnetic nanoparticles based on iron oxide doped with zinc syn-
thesized using the wet co-precipitation method for environmental application. The morphology of the
samples was revealed by SEM and TEM, which showed particles of granular shape and size of about
15 nm. The specific surface areas of the materials using the BET method were within the range of 85.7 to 101.5 m2 g−1 depending on the zinc content in the superparamagnetic iron oxide nanoparticles (SPI-ONs). Magnetometry was performed to determine the magnetic properties of the particles, indicating superparamagnetism. Synthesized magnetic nanoparticles with different amounts of zinc dopant were used as an adsorbent to remove model pollutant Titan yellow (TY) from the aqueous solutions. Adsorption was determined by investigating the effects of sorbent amount, dye concentration, and contact time. The synthesized material removed Titan yellow quickly and efficiently within the phys-ical adsorption. The adsorption isotherms were consistent with the models proposed by Langmuir and Redlich-Peterson. The monolayer adsorption capacities were 30 and 43 mg g−1 for Fe3O4 and Fe3O4@10%Zn, respectively, for the removal of TY. However, that of Congo red is 59 mg g−1 by Fe3O4@10%Zn. The proposed nanoparticles offer fast and cost-effective water purification, and they can be separated from solution using magnets. Keywords: perparamagnetic particles, pollution treatment, Titan yellow, Congo red, adsorption isotherm, iron oxide Affiliations:
Pietrzyk P. | - | other affiliation | Phuong N.T. | - | other affiliation | Olusegun S.J. | - | other affiliation | Nam N.H. | - | other affiliation | Thanh D.T.M. | - | other affiliation | Giersig M. | - | IPPT PAN | Krysiński P. | - | other affiliation | Osial M. | - | IPPT PAN |
| |