1. |
Jaskulski R., Jóźwiak-Niedźwiedzka D., Yakymechko Y.♦, Calcined Clay as Supplementary Cementitious Material,
Materials, ISSN: 1996-1944, DOI: 10.3390/ma13214734, Vol.13, No.21, pp.4734-1-36, 2020Abstract: Calcined clays are the only potential materials available in large quantities to meet the requirements of eco-efficient cement-based materials by reducing the clinker content in blended cements or reducing the cement content in concrete. More than 200 recent research papers on the idea of replacing Portland cement with large amounts of calcined clay are presented and discussed in detail. First, the fundamental information about the properties and structure of clay minerals is described. Then, the process of activation and hydration of clays is discussed, including the methods of pozzolanic activity assessment. Additionally, various testing methods of clays from different worldwide deposits are presented. The application of calcined clay in cement and concrete technology is then introduced. A separate chapter is devoted to lime calcined clay cement. Then an influence of calcined clay on durability of concrete is summarized. Finally, conclusions are formulated. Keywords: calcined clay, binder, supplementary cementitious materials, cement-based materials Affiliations:
Jaskulski R. | - | IPPT PAN | Jóźwiak-Niedźwiedzka D. | - | IPPT PAN | Yakymechko Y. | - | Warsaw University of Technology (PL) |
| |
2. |
Yakymechko Y.♦, Lutsyuk I.♦, Jaskulski R., Dulnik J., Kropyvnytska T.♦, The effect of vibro-activation time on the properties of highly active calcium hydroxide,
Buildings, ISSN: 2075-5309, DOI: 10.3390/buildings10060111, Vol.10, No.6, pp.111-1-8, 2020Abstract: The results of studying the effect of the vibration processing time on the size of calcium hydroxide particles are given. The physicochemical processes affecting the size and morphology of calcium hydroxide particles have been studied. A stage-by-stage mechanism of the process of the carbonation of lime, depending on its specific surface, is established. The results show that the optimal period for the vibration treatment of lime to obtain the most active material is 20 min. A longer period of vibration results in the merging of particles into larger agglomerates. Keywords: lime, portlandite, vibration treatment, carbonation, crystallization Affiliations:
Yakymechko Y. | - | Warsaw University of Technology (PL) | Lutsyuk I. | - | other affiliation | Jaskulski R. | - | IPPT PAN | Dulnik J. | - | IPPT PAN | Kropyvnytska T. | - | other affiliation |
| |