1. |
Jarząbek D.M., Milczarek M., Nosewicz S., Bazarnik P.♦, Schift H.♦, Size effects of hardness and strain rate sensitivity in amorphous silicon measured by nanoindentation,
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, ISSN: 1073-5623, DOI: 10.1007/s11661-020-05648-w, Vol.51, No.4, pp.1625-1633, 2020Abstract: In this work, dynamic mechanical properties of amorphous silicon and scale effects were investigated by the means of nanoindentation. An amorphous silicon sample was prepared by plasma-enhanced chemical vapor deposition (PECVD). Next, two sets of the samples were investigated: as-deposited and annealed in 500 °C for 1 hour. A three-sided pyramidal diamond Berkovich's indenter was used for the nanoindentation tests. In order to determine the strain rate sensitivity (SRS), indentations with different loading rates were performed: 0.1, 1, 10, 100 mN/min. Size effects were studied by application of maximum indentation loads in the range from 1 up to 5 mN (penetrating up to approximately one-third of the amorphous layer). The value of hardness was determined by the Oliver-Pharr method. An increase of hardness with decrease of the indentation depth was observed for both samples. Furthermore, the significant dependence of hardness on the strain rate has been reported. Finally, for the annealed samples at low strain rates a characteristic "elbow" during unloading was observed on the force-indentation depth curves. It could be attributed to the transformation of (β-Sn)-Si to the PI (pressure-induced) a-Si end phase. Affiliations:
Jarząbek D.M. | - | IPPT PAN | Milczarek M. | - | IPPT PAN | Nosewicz S. | - | IPPT PAN | Bazarnik P. | - | Warsaw University of Technology (PL) | Schift H. | - | Paul Scherrer Institut (CH) |
| |
2. |
Jarząbek D.M., Siewert D.♦, Fabianowski W.♦, Schift H.♦, Rymuza Z.♦, Jung T.♦, Influence of Alkali Ions on Tribological Properties of Silicon Surface,
TRIBOLOGY LETTERS, ISSN: 1023-8883, DOI: 10.1007/s11249-015-0603-5, Vol.60, No.2, pp.1-8, 2015Abstract: Tribological properties of surfaces (friction, adhesion and wear) provide challenging limitations to the design of reliable machines on the micro- and nanometer scale as the surface to volume area increases and volume, mass and inertia of the mobile parts decrease. This study reports on the reduction in the friction force of silicon surfaces after the alkali metal ion exposure in the form of aqueous solutions. A scanning force microscope equipped with a liquid cell was used to investigate the friction force and the pull-off force of a flat silicon surface immersed in water and in different alkali metal chlorides solutions: LiCl, NaCl and CsCl. The concentration ranged from 0.1 up to 1000 µmol/l. The changes in the free surface energy of the initial surface and of the modified surfaces after drying were determined from contact angle measurements and from the acid–base adhesion theory. In both cases, in the liquid environment and after drying of the exposed silicon substrates in air, the friction force is reduced by approximately 50 %. Our results provide new, fundamental insight into the exchange of surface termination layers in particular for tribology. Also it is suggested to use the procedure as a low-cost alternative to improve the tribological properties of the silicon surface in particular in applications where lubricating fluids are not appropriate, e.g., in nanomachines and devices. Keywords: Silicon surface, Scanning force microscopy, Friction, Adhesion, Alkali metal chlorides Affiliations:
Jarząbek D.M. | - | IPPT PAN | Siewert D. | - | Paul Scherrer Institut (CH) | Fabianowski W. | - | Paul Scherrer Institut (CH) | Schift H. | - | Paul Scherrer Institut (CH) | Rymuza Z. | - | other affiliation | Jung T. | - | Paul Scherrer Institut (CH) |
| |
3. |
Jarząbek D.M., Kaufmann A.N.♦, Schift H.♦, Rymuza Z.♦, Jung T.A.♦, Elastic modulus and fracture strength evaluation on the nanoscale by scanning force microscope experiments,
NANOTECHNOLOGY, ISSN: 0957-4484, DOI: 10.1088/0957-4484/25/21/215701, Vol.25, pp.215701-1-9, 2014Abstract: This work first reviews the capability of scanning force microscopy (SFM) to perform experiments with forces in a wide range, from low non-contact forces to high contact forces which induce mechanical deformations in the substrate. In analogy to fracture strength evaluation, as established in materials science, SFM is used to exert forces on pillars with nanometer dimensions while the cantilever deformations are monitored quantitatively. Hence, it is possible to bend the pillars until the threshold for triggering fracture is reached, and to determine the mechanical properties at the different stages of this process. Using this novel approach, in combination with 'state of the art' nanofabrication to produce nanopillar arrays on silicon and silicon dioxide substrates, a number of experiments are performed. Furthermore, quantitative measurements of the fracture strength of Si and of the SiO2/Si interface and E-modulus are presented. To analyze the experimental data obtained in the different experimental procedures and modes, finite element method calculations were used. The methods introduced herein provide a versatile toolbox for addressing a wide range of scientific problems and for applications in materials science and technology. Affiliations:
Jarząbek D.M. | - | IPPT PAN | Kaufmann A.N. | - | Paul Scherrer Institut (CH) | Schift H. | - | Paul Scherrer Institut (CH) | Rymuza Z. | - | other affiliation | Jung T.A. | - | Paul Scherrer Institut (CH) |
| |
4. |
Atasoy H.♦, Vogler M.♦, Haatainen T.♦, Schleunitz A.♦, Jarząbek D.M.♦, Schift H.♦, Reuther F.♦, Gruetzner G.♦, Rymuza Z.♦, Novel thermoplastic polymers with improved release properties for thermal NIL,
MICROELECTRONIC ENGINEERING, ISSN: 0167-9317, DOI: 10.1016/j.mee.2011.01.080, Vol.88, pp.1902-1905, 2011Abstract: In the nanoimprint lithography (NIL) process the mould release is a limiting step. Regardless of the carefully designed special properties a resist may have, it has to come over this challenging process step to be employed in a NIL process. Generally, the moulds are coated with anti-sticking layers. Here, an alternative solution is developed by modification of two well established NIL polymers through integration of fluorinated additives in their formulation. An effective additive concentration window was successfully defined, in which the substrate adhesion and imprint behaviour is not influenced. Defect-free patterning down to 30 nm is possible. A release force reduction of about 40% was observed with the modified polymer mr-I 7000R compared to the unmodified original Keywords: NIL polymers, Fluorinated additives, Release forces Affiliations:
Atasoy H. | - | other affiliation | Vogler M. | - | other affiliation | Haatainen T. | - | other affiliation | Schleunitz A. | - | other affiliation | Jarząbek D.M. | - | other affiliation | Schift H. | - | Paul Scherrer Institut (CH) | Reuther F. | - | other affiliation | Gruetzner G. | - | other affiliation | Rymuza Z. | - | other affiliation |
| |