Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Marta Grodzik


Recent publications
1.  Kosik-Kozioł A., Nakielski P., Rybak D., Frączek W., Rinoldi C., Lanzi M., Grodzik M., Pierini F., Adhesive Antibacterial Moisturizing Nanostructured Skin Patch for Sustainable Development of Atopic Dermatitis Treatment in Humans, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.4c06662, Vol.16, No.25, pp.32128-32146, 2024

Abstract:
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that lacks effective treatment. The therapeutic goals include alleviating symptoms, such as moisturizing and applying antibacterial and anti-inflammatory medications. Hence, there is an urgent need to develop a patch that effectively alleviates most of the AD symptoms. In this study, we employed a “green” cross-linking approach of poly(vinyl alcohol) (PVA) using glycerol, and we combined it with polyacrylonitrile (PAN) to fabricate core–shell (CS) nanofibers through electrospinning. Our designed structure offers multiple benefits as the core ensures controlled drug release and increases the strength of the patch, while the shell provides skin moisturization and exudate absorption. The efficient PVA cross-linking method facilitates the inclusion of sensitive molecules such as fermented oils. In vitro studies demonstrate the patches’ exceptional biocompatibility and efficacy in minimizing cell ingrowth into the CS structure containing argan oil, a property highly desirable for easy removal of the patch. Histological examinations conducted on an ex vivo model showed the nonirritant properties of developed patches. Furthermore, the eradication of Staphylococcus aureus bacteria confirms the potential use of CS nanofibers loaded with argan oil or norfloxacin, separately, as an antibacterial patch for infected AD wounds. In vivo patch application studies on patients, including one with AD, demonstrated ideal patches’ moisturizing effect. This innovative approach shows significant promise in enhancing life quality for AD sufferers by improving skin hydration and avoiding infections.

Keywords:
atopic dermatitis, core−shell electrospun nanofibers, antibacterial, mucoadhesive, moisturizing patch

Affiliations:
Kosik-Kozioł A. - IPPT PAN
Nakielski P. - IPPT PAN
Rybak D. - IPPT PAN
Frączek W. - other affiliation
Rinoldi C. - IPPT PAN
Lanzi M. - University of Bologna (IT)
Grodzik M. - other affiliation
Pierini F. - IPPT PAN
2.  Nakielski P., Rinoldi C., Pruchniewski M., Pawłowska S., Gazińska M., Strojny B., Rybak D., Jezierska-Woźniak K., Urbanek O., Denis P., Sinderewicz E., Czelejewska W., Staszkiewicz-Chodor J., Grodzik M., Ziai Y., Barczewska M., Maksymowicz W., Pierini F., Laser-assisted fabrication of injectable nanofibrous cell carriers, Small, ISSN: 1613-6810, DOI: 10.1002/smll.202104971, Vol.18, No.2, pp.2104971-1-18, 2022

Abstract:
The use of injectable biomaterials for cell delivery is a rapidly expanding field which may revolutionize the medical treatments by making them less invasive. However, creating desirable cell carriers poses significant challenges to the clinical implementation of cell-based therapeutics. At the same time, no method has been developed to produce injectable microscaffolds (MSs) from electrospun materials. Here the fabrication of injectable electrospun nanofibers is reported on, which retain their fibrous structure to mimic the extracellular matrix. The laser-assisted micro-scaffold fabrication has produced tens of thousands of MSs in a short time. An efficient attachment of cells to the surface and their proliferation is observed, creating cell-populated MSs. The cytocompatibility assays proved their biocompatibility, safety, and potential as cell carriers. Ex vivo results with the use of bone and cartilage tissues proved that NaOH hydrolyzed and chitosan functionalized MSs are compatible with living tissues and readily populated with cells. Injectability studies of MSs showed a high injectability rate, while at the same time, the force needed to eject the load is no higher than 25 N. In the future, the produced MSs may be studied more in-depth as cell carriers in minimally invasive cell therapies and 3D bioprinting applications.

Affiliations:
Nakielski P. - IPPT PAN
Rinoldi C. - IPPT PAN
Pruchniewski M. - other affiliation
Pawłowska S. - IPPT PAN
Gazińska M. - other affiliation
Strojny B. - other affiliation
Rybak D. - IPPT PAN
Jezierska-Woźniak K. - other affiliation
Urbanek O. - IPPT PAN
Denis P. - IPPT PAN
Sinderewicz E. - other affiliation
Czelejewska W. - other affiliation
Staszkiewicz-Chodor J. - other affiliation
Grodzik M. - other affiliation
Ziai Y. - IPPT PAN
Barczewska M. - University of Warmia and Mazury in Olsztyn (PL)
Maksymowicz W. - University of Warmia and Mazury in Olsztyn (PL)
Pierini F. - IPPT PAN

Conference abstracts
1.  Nakielski P., Rinoldi C., Pruchniewski M., Rybak D., Jezierska-Woźniak K., Gazińska M., Strojny B., Grodzik M., Maksymowicz W., Pierini F., Injectable nanofibrous microscaffolds, EHDAES, European Symposium on Electrohydrodynamic Atomization and Electrospinning, 2022-04-27/04-29, Napoli (IT), pp.1, 2022
2.  Nakielski P., Rinoldi C., Pruchniewski M., Rybak D., Jezierska-Woźniak K., Gazińska M., Strojny B., Grodzik M., Maksymowicz W., Pierini F., Injectable nanofibrous microscaffolds for cell and drug delivery, TERMIS-EU 2022, Tissue Engineering and Regenerative Medicine International Society European Chapter Conference 2022, 2022-06-28/07-01, Kraków (PL), pp.1, 2022
3.  Nakielski P., Rinoldi C., Pruchniewski M., Rybak D., Urbanek O., Jezierska- Woźniak K., Grodzik M., Maksymowicz W., Pierini F., Injectable microscaffolds for IVD regeneration, 2022 eCM20: Cartilage and Disc Repair and Regeneration, 2022-06-15/06-18, Davos (CH), pp.33-33, 2022

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024