1. |
Nakielski P., Kosik-Kozioł A., Rinoldi C., Rybak D., Namdev M.♦, Jacob W.♦, Lehmann T.♦, Głowacki M.♦, Bogusz S.♦, Rzepna M.♦, Marinelli M.♦, Lanzi M.♦, Dror S.♦, Sarah M.♦, Dmitriy S.♦, Pierini F., Injectable PLGA Microscaffolds with Laser-Induced Enhanced Microporosity for Nucleus Pulposus Cell Delivery,
Small, ISSN: 1613-6810, DOI: 10.1002/smll.202404963, pp.2404963-1-15, 2024Abstract: Intervertebral disc (IVD) degeneration is a leading cause of lower back pain (LBP). Current treatments primarily address symptoms without halting the degenerative process. Cell transplantation offers a promising approach for early-stage IVD degeneration, but challenges such as cell viability, retention, and harsh host environments limit its efficacy. This study aimed to compare the injectability and biocompatibility of human nucleus pulposus cells (hNPC) attached to two types of microscaffolds designed for minimally invasive delivery to IVD. Microscaffolds are developed from poly(lactic-co-glycolic acid) (PLGA) using electrospinning and femtosecond laser structuration. These microscaffolds are tested for their physical properties, injectability, and biocompatibility. This study evaluates cell adhesion, proliferation, and survival in vitro and ex vivo within a hydrogel-based nucleus pulposus model. The microscaffolds demonstrate enhanced surface architecture, facilitating cell adhesion and proliferation. Laser structuration improved porosity, supporting cell attachment and extracellular matrix deposition. Injectability tests show that microscaffolds can be delivered through small-gauge needles with minimal force, maintaining high cell viability. The findings suggest that laser-structured PLGA microscaffolds are viable for minimally invasive cell delivery. These microscaffolds enhance cell viability and retention, offering potential improvements in the therapeutic efficiency of cell-based treatments for discogenic LBP. Affiliations:
Nakielski P. | - | IPPT PAN | Kosik-Kozioł A. | - | IPPT PAN | Rinoldi C. | - | IPPT PAN | Rybak D. | - | IPPT PAN | Namdev M. | - | other affiliation | Jacob W. | - | other affiliation | Lehmann T. | - | other affiliation | Głowacki M. | - | Jagiellonian University (PL) | Bogusz S. | - | other affiliation | Rzepna M. | - | other affiliation | Marinelli M. | - | other affiliation | Lanzi M. | - | University of Bologna (IT) | Dror S. | - | other affiliation | Sarah M. | - | other affiliation | Dmitriy S. | - | other affiliation | Pierini F. | - | IPPT PAN |
| |
2. |
Kosik-Kozioł A., Nakielski P., Rybak D., Frączek W.♦, Rinoldi C., Lanzi M.♦, Grodzik M.♦, Pierini F., Adhesive Antibacterial Moisturizing Nanostructured Skin Patch for Sustainable Development of Atopic Dermatitis Treatment in Humans,
ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.4c06662, Vol.16, No.25, pp.32128-32146, 2024Abstract: Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that lacks effective treatment. The therapeutic goals include alleviating symptoms, such as moisturizing and applying antibacterial and anti-inflammatory medications. Hence, there is an urgent need to develop a patch that effectively alleviates most of the AD symptoms. In this study, we employed a “green” cross-linking approach of poly(vinyl alcohol) (PVA) using glycerol, and we combined it with polyacrylonitrile (PAN) to fabricate core–shell (CS) nanofibers through electrospinning. Our designed structure offers multiple benefits as the core ensures controlled drug release and increases the strength of the patch, while the shell provides skin moisturization and exudate absorption. The efficient PVA cross-linking method facilitates the inclusion of sensitive molecules such as fermented oils. In vitro studies demonstrate the patches’ exceptional biocompatibility and efficacy in minimizing cell ingrowth into the CS structure containing argan oil, a property highly desirable for easy removal of the patch. Histological examinations conducted on an ex vivo model showed the nonirritant properties of developed patches. Furthermore, the eradication of Staphylococcus aureus bacteria confirms the potential use of CS nanofibers loaded with argan oil or norfloxacin, separately, as an antibacterial patch for infected AD wounds. In vivo patch application studies on patients, including one with AD, demonstrated ideal patches’ moisturizing effect. This innovative approach shows significant promise in enhancing life quality for AD sufferers by improving skin hydration and avoiding infections. Keywords: atopic dermatitis, core−shell electrospun nanofibers, antibacterial, mucoadhesive, moisturizing patch Affiliations:
Kosik-Kozioł A. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Rybak D. | - | IPPT PAN | Frączek W. | - | other affiliation | Rinoldi C. | - | IPPT PAN | Lanzi M. | - | University of Bologna (IT) | Grodzik M. | - | other affiliation | Pierini F. | - | IPPT PAN |
| |
3. |
Rybak D., Rinoldi C., Nakielski P., Du J.♦, Haghighat Bayan Mohammad A., Zargarian S.S., Pruchniewski M.♦, Li X.♦, Strojny-Cieślak B.♦, Ding B.♦, Pierini F., Injectable and self-healable nano-architectured hydrogel for NIR-light responsive chemo- and photothermal bacterial eradication,
JOURNAL OF MATERIALS CHEMISTRY B , ISSN: 2050-7518, DOI: 10.1039/D3TB02693K, Vol.12, No.7, pp.1905-1925, 2024Abstract: Hydrogels with multifunctional properties activated at specific times have gained significant attention in the biomedical field. As bacterial infections can cause severe complications that negatively impact wound repair, herein, we present the development of a stimuli-responsive, injectable, and in situ-forming hydrogel with antibacterial, self-healing, and drug-delivery properties. In this study, we prepared a Pluronic F-127 (PF127) and sodium alginate (SA)-based hydrogel that can be targeted to a specific tissue via injection. The PF127/SA hydrogel was incorporated with polymeric short-filaments (SFs) containing an anti-inflammatory drug – ketoprofen, and stimuli-responsive polydopamine (PDA) particles. The hydrogel, after injection, could be in situ gelated at the body temperature, showing great in vitro stability and self-healing ability after 4 h of incubation. The SFs and PDA improved the hydrogel injectability and compressive strength. The introduction of PDA significantly accelerated the KET release under near-infrared light exposure and extended its release validity period. The excellent composites’ photo-thermal performance led to antibacterial activity against representative Gram-positive and Gram-negative bacteria, resulting in 99.9% E. coli and S. aureus eradication after 10 min of NIR light irradiation. In vitro, fibroblast L929 cell studies confirmed the materials’ biocompatibility and paved the way toward further in vivo and clinical application of the system for chronic wound treatments. Affiliations:
Rybak D. | - | IPPT PAN | Rinoldi C. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Du J. | - | University of California (US) | Haghighat Bayan Mohammad A. | - | IPPT PAN | Zargarian S.S. | - | IPPT PAN | Pruchniewski M. | - | other affiliation | Li X. | - | Donghua University (CN) | Strojny-Cieślak B. | - | other affiliation | Ding B. | - | Donghua University (CN) | Pierini F. | - | IPPT PAN |
| |
4. |
Haghighat Bayan M.A., Rinoldi C., Rybak D., Zargarian S.S., Zakrzewska A., Miler O., Põhako-Palu K.♦, Zhang S.♦, Stobnicka-Kupiec A.♦, Górny Rafał L.♦, Nakielski P., Kogermann K.♦, De Sio L.♦, Ding B.♦, Pierini F., Engineering surgical face masks with photothermal and photodynamic plasmonic nanostructures for enhancing filtration and on-demand pathogen eradication,
Biomaterials Science, ISSN: 2047-4849, DOI: 10.1039/d3bm01125a, Vol.12, No.4, pp.949-963, 2024Abstract: The shortage of face masks and the lack of antipathogenic functions has been significant since the recent pandemic's inception. Moreover, the disposal of an enormous number of contaminated face masks not only carries a significant environmental impact but also escalates the risk of cross-contamination. This study proposes a strategy to upgrade available surgical masks into antibacterial masks with enhanced particle and bacterial filtration. Plasmonic nanoparticles can provide photodynamic and photothermal functionalities for surgical masks. For this purpose, gold nanorods act as on-demand agents to eliminate pathogens on the surface of the masks upon near-infrared light irradiation. Additionally, the modified masks are furnished with polymer electrospun nanofibrous layers. These electrospun layers can enhance the particle and bacterial filtration efficiency, not at the cost of the pressure drop of the mask. Consequently, fabricating these prototype masks could be a practical approach to upgrading the available masks to alleviate the environmental toll of disposable face masks. Affiliations:
Haghighat Bayan M.A. | - | IPPT PAN | Rinoldi C. | - | IPPT PAN | Rybak D. | - | IPPT PAN | Zargarian S.S. | - | IPPT PAN | Zakrzewska A. | - | IPPT PAN | Miler O. | - | IPPT PAN | Põhako-Palu K. | - | other affiliation | Zhang S. | - | other affiliation | Stobnicka-Kupiec A. | - | other affiliation | Górny Rafał L. | - | other affiliation | Nakielski P. | - | IPPT PAN | Kogermann K. | - | other affiliation | De Sio L. | - | Sapienza University of Rome (IT) | Ding B. | - | Donghua University (CN) | Pierini F. | - | IPPT PAN |
| |
5. |
Haghighat Bayan M.A., Rinoldi C., Kosik-Kozioł A., Bartolewska M., Rybak D., Zargarian S., Shah S., Krysiak Z., Zhang S.♦, Lanzi M.♦, Nakielski P., Ding B.♦, Pierini F., Solar-to-NIR Light Activable PHBV/ICG Nanofiber-Based Face Masks with On-Demand Combined Photothermal and Photodynamic Antibacterial Properties,
Advanced Materials Technologies, ISSN: 2365-709X, DOI: 10.1002/admt.202400450, pp.2400450-1-18, 2024Abstract: Hierarchical nanostructures fabricate by electrospinning in combination with light-responsive agents offer promising scenarios for developing novel activable antibacterial interfaces. This study introduces an innovative antibacterial face mask developed from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers integrated with indocyanine green (ICG), targeting the urgent need for effective antimicrobial protection for community health workers. The research focuses on fabricating and characterizing this nanofibrous material, evaluating the mask's mechanical and chemical properties, investigating its particle filtration, and assessing antibacterial efficacy under photothermal conditions for reactive oxygen species (ROS) generation. The PHBV/ICG nanofibers are produced using an electrospinning process, and the nanofibrous construct's morphology, structure, and photothermal response are investigated. The antibacterial efficacy of the nanofibers is tested, and substantial bacterial inactivation under both near-infrared (NIR) and solar irradiation is demonstrated due to the photothermal response of the nanofibers. The material's photothermal response is further analyzed under cyclic irradiation to simulate real-world conditions, confirming its durability and consistency. This study highlights the synergistic impact of PHBV and ICG in enhancing antibacterial activity, presenting a biocompatible and environmentally friendly solution. These findings offer a promising path for developing innovative face masks that contribute significantly to the field of antibacterial materials and solve critical public health challenges. Affiliations:
Haghighat Bayan M.A. | - | IPPT PAN | Rinoldi C. | - | IPPT PAN | Kosik-Kozioł A. | - | IPPT PAN | Bartolewska M. | - | IPPT PAN | Rybak D. | - | IPPT PAN | Zargarian S. | - | IPPT PAN | Shah S. | - | IPPT PAN | Krysiak Z. | - | IPPT PAN | Zhang S. | - | other affiliation | Lanzi M. | - | University of Bologna (IT) | Nakielski P. | - | IPPT PAN | Ding B. | - | Donghua University (CN) | Pierini F. | - | IPPT PAN |
| |
6. |
Ziai Y., Lanzi M.♦, Rinoldi C., Zargarian S.S., Zakrzewska A., Kosik-Kozioł A., Nakielski P., Pierini F., Developing strategies to optimize the anchorage between electrospun nanofibers and hydrogels for multi-layered plasmonic biomaterials,
Nanoscale Advances, ISSN: 2516-0230, DOI: 10.1039/d3na01022h, Vol.6, No.4, pp.1246-1258, 2024Abstract: Polycaprolactone (PCL), a recognized biopolymer, has emerged as a prominent choice for diverse biomedical endeavors due to its good mechanical properties, exceptional biocompatibility, and tunable properties. These attributes render PCL a suitable alternative biomaterial to use in biofabrication, especially the electrospinning technique, facilitating the production of nanofibers with varied dimensions and functionalities. However, the inherent hydrophobicity of PCL nanofibers can pose limitations. Conversely, acrylamide-based hydrogels, characterized by their interconnected porosity, significant water retention, and responsive behavior, present an ideal matrix for numerous biomedical applications. By merging these two materials, one can harness their collective strengths while potentially mitigating individual limitations. A robust interface and effective anchorage during the composite fabrication are pivotal for the optimal performance of the nanoplatforms. Nanoplatforms are subject to varying degrees of tension and physical alterations depending on their specific applications. This is particularly pertinent in the case of layered nanostructures, which require careful consideration to maintain structural stability and functional integrity in their intended applications. In this study, we delve into the influence of the fiber dimensions, orientation and surface modifications of the nanofibrous layer and the hydrogel layer's crosslinking density on their intralayer interface to determine the optimal approach. Comprehensive mechanical pull-out tests offer insights into the interfacial adhesion and anchorage between the layers. Notably, plasma treatment of the hydrophobic nanofibers and the stiffness of the hydrogel layer significantly enhance the mechanical effort required for fiber extraction from the hydrogels, indicating improved anchorage. Furthermore, biocompatibility assessments confirm the potential biomedical applications of the proposed nanoplatforms. Affiliations:
Ziai Y. | - | IPPT PAN | Lanzi M. | - | University of Bologna (IT) | Rinoldi C. | - | IPPT PAN | Zargarian S.S. | - | IPPT PAN | Zakrzewska A. | - | IPPT PAN | Kosik-Kozioł A. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Pierini F. | - | IPPT PAN |
| |
7. |
Nakielski P., Rybak D., Jezierska-Woźniak K.♦, Rinoldi C., Sinderewicz E.♦, Staszkiewicz-Chodor J.♦, Haghighat Bayan M.A., Czelejewska W.♦, Urbanek-Świderska O., Kosik-Kozioł A., Barczewska M.♦, Skomorowski M.♦, Holak P.♦, Lipiński S.♦, Maksymowicz W.♦, Pierini F., Minimally invasive intradiscal delivery of BM-MSCs via fibrous microscaffold carriers,
ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.3c11710, pp.1-16, 2023Abstract: Current treatments of degenerated intervertebral discs often provide only temporary relief or address specific causes, necessitating the exploration of alternative therapies. Cell-based regenerative approaches showed promise in many clinical trials, but
limitations such as cell death during injection and a harsh disk environment hinder their effectiveness. Injectable microscaffolds offer a solution by providing a supportive microenvironment for cell delivery and enhancing bioactivity. This study evaluated the
safety and feasibility of electrospun nanofibrous microscaffolds modified with chitosan (CH) and chondroitin sulfate (CS) for treating degenerated NP tissue in a large animal model. The microscaffolds facilitated cell attachment and acted as an effective delivery system, preventing cell leakage under a high disc pressure. Combining microscaffolds with bone marrow-derived mesenchymal stromal cells demonstrated no cytotoxic effects and proliferation over the entire microscaffolds. The administration of cells attached to microscaffolds into the NP positively influenced the regeneration process of the intervertebral disc. Injectable poly(L-lactide-co-glycolide) and poly(L-lactide) microscaffolds enriched with CH or CS, having a fibrous structure, showed the potential to promote intervertebral disc regeneration. These features collectively address critical challenges in the fields of tissue engineering and regenerative medicine, particularly in the context of intervertebral disc degeneration. Keywords: microscaffolds,cell carriers,injectable biomaterials,intervertebral disc,laser micromachining,electrospinning Affiliations:
Nakielski P. | - | IPPT PAN | Rybak D. | - | IPPT PAN | Jezierska-Woźniak K. | - | other affiliation | Rinoldi C. | - | IPPT PAN | Sinderewicz E. | - | other affiliation | Staszkiewicz-Chodor J. | - | other affiliation | Haghighat Bayan M.A. | - | IPPT PAN | Czelejewska W. | - | other affiliation | Urbanek-Świderska O. | - | IPPT PAN | Kosik-Kozioł A. | - | IPPT PAN | Barczewska M. | - | University of Warmia and Mazury in Olsztyn (PL) | Skomorowski M. | - | other affiliation | Holak P. | - | other affiliation | Lipiński S. | - | other affiliation | Maksymowicz W. | - | University of Warmia and Mazury in Olsztyn (PL) | Pierini F. | - | IPPT PAN |
| |
8. |
Rinoldi C., Ziai Y., Zargarian S.S., Nakielski P., Zembrzycki K., Haghighat Bayan M.A., Zakrzewska A., Fiorelli R., Lanzi M.♦, Kostrzewska-Księżyk A.♦, Czajkowski R.♦, Kublik E.♦, Kaczmarek L.♦, Pierini F., In Vivo Chronic Brain Cortex Signal Recording Based on a Soft Conductive Hydrogel Biointerface,
ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.2c17025, Vol.15, No.5, pp.6283-6296, 2023Abstract: In neuroscience, the acquisition of neural signals from the brain cortex is crucial to analyze brain processes, detect neurological disorders, and offer therapeutic brain–computer interfaces. The design of neural interfaces conformable to the brain tissue is one of today’s major challenges since the insufficient biocompatibility of those systems provokes a fibrotic encapsulation response, leading to an inaccurate signal recording and tissue damage precluding long-term/permanent implants. The design and production of a novel soft neural biointerface made of polyacrylamide hydrogels loaded with plasmonic silver nanocubes are reported herein. Hydrogels are surrounded by a silicon-based template as a supporting element for guaranteeing an intimate neural-hydrogel contact while making possible stable recordings from specific sites in the brain cortex. The nanostructured hydrogels show superior electroconductivity while mimicking the mechanical characteristics of the brain tissue. Furthermore, in vitro biological tests performed by culturing neural progenitor cells demonstrate the biocompatibility of hydrogels along with neuronal differentiation. In vivo chronic neuroinflammation tests on a mouse model show no adverse immune response toward the nanostructured hydrogel-based neural interface. Additionally, electrocorticography acquisitions indicate that the proposed platform permits long-term efficient recordings of neural signals, revealing the suitability of the system as a chronic neural biointerface. Keywords: brain−machine interface,conductive hydrogels,nanostructured biomaterials,in vitro and in vivo biocompatibility,long-term neural recording Affiliations:
Rinoldi C. | - | IPPT PAN | Ziai Y. | - | IPPT PAN | Zargarian S.S. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Zembrzycki K. | - | IPPT PAN | Haghighat Bayan M.A. | - | IPPT PAN | Zakrzewska A. | - | IPPT PAN | Fiorelli R. | - | IPPT PAN | Lanzi M. | - | University of Bologna (IT) | Kostrzewska-Księżyk A. | - | other affiliation | Czajkowski R. | - | other affiliation | Kublik E. | - | other affiliation | Kaczmarek L. | - | other affiliation | Pierini F. | - | IPPT PAN |
| |
9. |
Pruchniewski M.♦, Sawosz E.♦, Sosnowska-Ławnicka M.♦, Ostrowska A.♦, Łojkowski M.♦, Koczoń P.♦, Nakielski P., Kutwin M.♦, Jaworski S.♦, Strojny-Cieślak B.♦, Nanostructured graphene oxide enriched with metallic nanoparticles as a biointerface to enhance cell adhesion through mechanosensory modifications,
NANOSCALE, ISSN: 2040-3364, DOI: 10.1039/d3nr03581f, Vol.15, No.46, pp.18639-18659, 2023Abstract: Nanostructuring is a process involving surface manipulation at the nanometric level, which improves the mechanical and biological properties of biomaterials. Specifically, it affects the mechanotransductive perception of the microenvironment of cells. Mechanical force conversion into an electrical or chemical signal contributes to the induction of a specific cellular response. The relationship between the cells and growth surface induces a biointerface-modifying cytophysiology and consequently a therapeutic effect. In this study, we present the fabrication of graphene oxide (GO)-based nanofilms decorated with metallic nanoparticles (NPs) as potential coatings for biomaterials. Our investigation showed the effect of decorating GO with metallic NPs for the modification of the physicochemical properties of nanostructures in the form of nanoflakes and nanofilms. A comprehensive biocompatibility screening panel revealed no disturbance in the metabolic activity of human fibroblasts (HFFF2) and bone marrow stroma cells (HS-5) cultivated on the GO nanofilms decorated with gold and copper NPs, whereas a significant cytotoxic effect of the GO nanocomplex decorated with silver NPs was demonstrated. The GO nanofilm decorated with gold NPs beneficially managed early cell adhesion as a result of the transient upregulation of α1β5 integrin expression, acceleration of cellspreading, and formation of elongated filopodia. Additionally, the cells, sensing the substrate derived from the nanocomplex enriched with gold NPs, showed reduced elasticity and altered levels of vimentin expression. In the future, GO nanocomplexes decorated with gold NPs can be incorporated in the structure of architecturally designed biomimetic biomaterials as biocompatible nanostructuring agents with proadhesive properties. Affiliations:
Pruchniewski M. | - | other affiliation | Sawosz E. | - | Warsaw University of Life Sciences (PL) | Sosnowska-Ławnicka M. | - | other affiliation | Ostrowska A. | - | other affiliation | Łojkowski M. | - | other affiliation | Koczoń P. | - | other affiliation | Nakielski P. | - | IPPT PAN | Kutwin M. | - | Warsaw University of Life Sciences (PL) | Jaworski S. | - | Warsaw University of Life Sciences (PL) | Strojny-Cieślak B. | - | other affiliation |
| |
10. |
Ziai Y., Zargarian S. S., Rinoldi C., Nakielski P., Sola A.♦, Lanzi M.♦, Truong Yen B.♦, Pierini F., Conducting polymer-based nanostructured materials for brain–machine interfaces,
WIREs Nanomedicine and Nanobiotechnology, ISSN: 1939-0041, DOI: 10.1002/wnan.1895, Vol.15, No.5, pp.e1895-1-33, 2023Abstract: As scientists discovered that raw neurological signals could translate into bioelectric information, brain–machine interfaces (BMI) for experimental and clinical studies have experienced massive growth. Developing suitable materials for bioelectronic devices to be used for real-time recording and data digitalizing has three important necessitates which should be covered. Biocompatibility, electrical conductivity, and having mechanical properties similar to soft brain tissue to decrease mechanical mismatch should be adopted for all materials. In this review, inorganic nanoparticles and intrinsically conducting polymers are discussed to impart electrical conductivity to systems, where soft materials such as hydrogels can offer reliable mechanical properties and a biocompatible substrate. Interpenetrating hydrogel networks offer more mechanical stability and provide a path for incorporating polymers with desired properties into one strong network. Promising fabrication methods, like electrospinning and additive manufacturing, allow scientists to customize designs for each application and reach the maximum potential for the system. In the near future, it is desired to fabricate biohybrid conducting polymer-based interfaces loaded with cells, giving the opportunity for simultaneous stimulation and regeneration. Developing multi-modal BMIs, Using artificial intelligence and machine learning to design advanced materials are among the future goals for this field. Keywords: 3D printing,brain–machine interface,conductive hydrogels,electrospinning,neural recording Affiliations:
Ziai Y. | - | IPPT PAN | Zargarian S. S. | - | IPPT PAN | Rinoldi C. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Sola A. | - | other affiliation | Lanzi M. | - | University of Bologna (IT) | Truong Yen B. | - | other affiliation | Pierini F. | - | IPPT PAN |
| |
11. |
Rybak D., Su Y.♦, Li Y.♦, Ding B.♦, Lv X.♦, Li Z.♦, Yeh Y.♦, Nakielski P., Rinoldi C., Pierini F., Dodda Jagan M.♦, Evolution of nanostructured skin patches towards multifunctional wearable platforms for biomedical applications,
NANOSCALE, ISSN: 2040-3364, DOI: 10.1039/D3NR00807J, Vol.15, No.18, pp.8044-8083, 2023Abstract: Recent advances in the field of skin patches have promoted the development of wearable and implantable bioelectronics for long-term, continuous healthcare management and targeted therapy. However, the design of electronic skin (e-skin) patches with stretchable components is still challenging and requires an in-depth understanding of the skin-attachable substrate layer, functional biomaterials and advanced self-powered electronics. In this comprehensive review, we present the evolution of skin patches from functional nanostructured materials to multi-functional and stimuli-responsive patches towards flexible substrates and emerging biomaterials for e-skin patches, including the material selection, structure design and promising applications. Stretchable sensors and self-powered e-skin patches are also discussed, ranging from electrical stimulation for clinical procedures to continuous health monitoring and integrated systems for comprehensive healthcare management. Moreover, an integrated energy harvester with bioelectronics enables the fabrication of self-powered electronic skin patches, which can effectively solve the energy supply and overcome the drawbacks induced by bulky battery-driven devices. However, to realize the full potential offered by these advancements, several challenges must be addressed for next-generation e-skin patches. Finally, future opportunities and positive outlooks are presented on the future directions of bioelectronics. It is believed that innovative material design, structure engineering, and in-depth study of fundamental principles can foster the rapid evolution of electronic skin patches, and eventually enable self-powered close-looped bioelectronic systems to benefit mankind. Affiliations:
Rybak D. | - | IPPT PAN | Su Y. | - | other affiliation | Li Y. | - | other affiliation | Ding B. | - | Donghua University (CN) | Lv X. | - | other affiliation | Li Z. | - | other affiliation | Yeh Y. | - | other affiliation | Nakielski P. | - | IPPT PAN | Rinoldi C. | - | IPPT PAN | Pierini F. | - | IPPT PAN | Dodda Jagan M. | - | other affiliation |
| |
12. |
Haghighat Bayan M.A., Dias Yasmin J.♦, Rinoldi C., Nakielski P., Rybak D., Truong Yen B.♦, Yarin A.♦, Pierini F., Near-infrared light activated core-shell electrospun nanofibers decorated with photoactive plasmonic nanoparticles for on-demand smart drug delivery applications,
Journal of Polymer Science, ISSN: 2642-4169, DOI: 10.1002/pol.20220747, Vol.61, No.7, pp.521-533, 2023Abstract: Over the last few years, traditional drug delivery systems (DDSs) have been transformed into smart DDSs. Recent advancements in biomedical nanotech-nology resulted in introducing stimuli-responsiveness to drug vehicles. Nano-
platforms can enhance drug release efficacy while reducing the side effects of drugs by taking advantage of the responses to specific internal or external stim-uli. In this study, we developed an electrospun nanofibrous photo-responsive DDSs. The photo-responsivity of the platform enables on-demand elevated drug release. Furthermore, it can provide a sustained release profile and pre-vent burst release and high concentrations of drugs. A coaxial electrospinning setup paired with an electrospraying technique is used to fabricate core-shell PVA-PLGA nanofibers decorated with plasmonic nanoparticles. The fabricated
nanofibers have a hydrophilic PVA and Rhodamine-B (RhB) core, while the shell is hydrophobic PLGA decorated with gold nanorods (Au NRs). The presence of plasmonic nanoparticles enables the platform to twice the amount of drug release besides exhibiting a long-term release. Investigations into the photo-responsive release mechanism demonstrate the system's potential as a “smart” drug delivery platform. Keywords: electrospun core-shell nanofibers,NIR-light activation,on-demand drug release,plasmonic nanoparticles,stimuli-responsive nanomaterials Affiliations:
Haghighat Bayan M.A. | - | IPPT PAN | Dias Yasmin J. | - | other affiliation | Rinoldi C. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Rybak D. | - | IPPT PAN | Truong Yen B. | - | other affiliation | Yarin A. | - | Technion-Israel Institute of Technology (IL) | Pierini F. | - | IPPT PAN |
| |
13. |
Zakrzewska A., Haghighat Bayan M.A., Nakielski P., Petronella F.♦, De Sio L.♦, Pierini F., Nanotechnology Transition Roadmap toward Multifunctional Stimuli-Responsive Face Masks,
ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.2c10335, Vol.14, No.41, pp.46123-46144, 2022Abstract: In recent times, the use of personal protective equipment, such as face masks or respirators, is becoming more and more critically important because of common pollution; furthermore, face masks have become a necessary element in the global fight against the COVID-19 pandemic. For this reason, the main mission of scientists has become the development of face masks with exceptional properties that will enhance their performance. The versatility of electrospun polymer nanofibers has determined their suitability as a material for constructing “smart” filter media. This paper provides an overview of the research carried out on nanofibrous filters obtained by electrospinning. The progressive development of the next generation of face masks whose unique properties can be activated in response to a specific external stimulus is highlighted. Thanks to additional components incorporated into the fiber structure, filters can, for example, acquire antibacterial or antiviral properties, self-sterilize the structure, and store the energy generated by users. Despite the discovery of several fascinating possibilities, some of them remain unexplored. Stimuli-responsive filters have the potential to become products of large-scale availability and great importance to society as a whole. Keywords: nanostructured face masks, stimuli-responsive nanomaterials, electrospun nanofibers, active filtration, smart filters, COVID-19, antipathogen Affiliations:
Zakrzewska A. | - | IPPT PAN | Haghighat Bayan M.A. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Petronella F. | - | other affiliation | De Sio L. | - | Sapienza University of Rome (IT) | Pierini F. | - | IPPT PAN |
| |
14. |
Nakielski P., Rinoldi C., Pruchniewski M.♦, Pawłowska S., Gazińska M.♦, Strojny B.♦, Rybak D., Jezierska-Woźniak K.♦, Urbanek O., Denis P., Sinderewicz E.♦, Czelejewska W.♦, Staszkiewicz-Chodor J.♦, Grodzik M.♦, Ziai Y., Barczewska M.♦, Maksymowicz W.♦, Pierini F., Laser-assisted fabrication of injectable nanofibrous cell carriers,
Small, ISSN: 1613-6810, DOI: 10.1002/smll.202104971, Vol.18, No.2, pp.2104971-1-18, 2022Abstract: The use of injectable biomaterials for cell delivery is a rapidly expanding field which may revolutionize the medical treatments by making them less invasive. However, creating desirable cell carriers poses significant challenges to the clinical implementation of cell-based therapeutics. At the same time, no method has been developed to produce injectable microscaffolds (MSs) from electrospun materials. Here the fabrication of injectable electrospun nanofibers is reported on, which retain their fibrous structure to mimic the extracellular matrix. The laser-assisted micro-scaffold fabrication has produced tens of thousands of MSs in a short time. An efficient attachment of cells to the surface and their proliferation is observed, creating cell-populated MSs. The cytocompatibility assays proved their biocompatibility, safety, and potential as cell carriers. Ex vivo results with the use of bone and cartilage tissues proved that NaOH hydrolyzed and chitosan functionalized MSs are compatible with living tissues and readily populated with cells. Injectability studies of MSs showed a high injectability rate, while at the same time, the force needed to eject the load is no higher than 25 N. In the future, the produced MSs may be studied more in-depth as cell carriers in minimally invasive cell therapies and 3D bioprinting applications. Affiliations:
Nakielski P. | - | IPPT PAN | Rinoldi C. | - | IPPT PAN | Pruchniewski M. | - | other affiliation | Pawłowska S. | - | IPPT PAN | Gazińska M. | - | other affiliation | Strojny B. | - | other affiliation | Rybak D. | - | IPPT PAN | Jezierska-Woźniak K. | - | other affiliation | Urbanek O. | - | IPPT PAN | Denis P. | - | IPPT PAN | Sinderewicz E. | - | other affiliation | Czelejewska W. | - | other affiliation | Staszkiewicz-Chodor J. | - | other affiliation | Grodzik M. | - | other affiliation | Ziai Y. | - | IPPT PAN | Barczewska M. | - | University of Warmia and Mazury in Olsztyn (PL) | Maksymowicz W. | - | University of Warmia and Mazury in Olsztyn (PL) | Pierini F. | - | IPPT PAN |
| |
15. |
Glaeser J.D.♦, Bao X.♦, Kaneda G.♦, Avalos P.♦, Behrens P.♦, Salehi K.♦, Da X.♦, Chen A.♦, Castaneda C.♦, Nakielski P., Jiang W.♦, Tawackoli W.♦, Sheyn D.♦, iPSC-neural crest derived cells embedded in 3D printable bio-ink promote cranial bone defect repair,
Scientific Reports, ISSN: 2045-2322, DOI: 10.1038/s41598-022-22502-8, Vol.12, No.18701, pp.1-14, 2022Abstract: Cranial bone loss presents a major clinical challenge and new regenerative approaches to address craniofacial reconstruction are in great demand. Induced pluripotent stem cell (iPSC) differentiation is a powerful tool to generate mesenchymal stromal cells (MSCs). Prior research demonstrated the potential of bone marrow-derived MSCs (BM-MSCs) and iPSC-derived mesenchymal progenitor cells via the neural crest (NCC-MPCs) or mesodermal lineages (iMSCs) to be promising cell source for bone regeneration. Overexpression of human recombinant bone morphogenetic protein (BMP)6 efficiently stimulates bone formation. The study aimed to evaluate the potential of iPSC-derived cells via neural crest or mesoderm overexpressing BMP6 and embedded in 3D printable bio-ink to generate viable bone graft alternatives for cranial reconstruction. Cell viability, osteogenic potential of cells, and bio-ink (Ink-Bone or GelXa) combinations were investigated in vitro using bioluminescent imaging. The osteogenic potential of bio-ink-cell constructs were evaluated in osteogenic media or nucleofected with BMP6 using qRT-PCR and in vitro μCT. For in vivo testing, two 2 mm circular defects were created in the frontal and parietal bones of NOD/SCID mice and treated with Ink-Bone, Ink-Bone + BM-MSC-BMP6, Ink-Bone + iMSC-BMP6, Ink-Bone + iNCC-MPC-BMP6, or left untreated. For follow-up, µCT was performed at weeks 0, 4, and 8 weeks. At the time of sacrifice (week 8), histological and immunofluorescent analyses were performed. Both bio-inks supported cell survival and promoted osteogenic differentiation of iNCC-MPCs and BM-MSCs in vitro. At 4 weeks, cell viability of both BM-MSCs and iNCC-MPCs were increased in Ink-Bone compared to GelXA. The combination of Ink-Bone with iNCC-MPC-BMP6 resulted in an increased bone volume in the frontal bone compared to the other groups at 4 weeks post-surgery. At 8 weeks, both iNCC-MPC-BMP6 and iMSC-MSC-BMP6 resulted in an increased bone volume and partial bone bridging between the implant and host bone compared to the other groups. The results of this study show the potential of NCC-MPC-incorporated bio-ink to regenerate frontal cranial defects. Therefore, this bio-ink-cell combination should be further investigated for its therapeutic potential in large animal models with larger cranial defects, allowing for 3D printing of the cell-incorporated material. Keywords: induced pluripotnet stem cells, bone, 3d-printing Affiliations:
Glaeser J.D. | - | other affiliation | Bao X. | - | other affiliation | Kaneda G. | - | other affiliation | Avalos P. | - | other affiliation | Behrens P. | - | other affiliation | Salehi K. | - | other affiliation | Da X. | - | other affiliation | Chen A. | - | other affiliation | Castaneda C. | - | other affiliation | Nakielski P. | - | IPPT PAN | Jiang W. | - | other affiliation | Tawackoli W. | - | other affiliation | Sheyn D. | - | other affiliation |
| |
16. |
Ziai Y., Petronella F.♦, Rinoldi C., Nakielski P., Zakrzewska A., Kowalewski T.A., Augustyniak W.♦, Li X.♦, Calogero A.♦, Sabała I.♦, Ding B.♦, De Sio L.♦, Pierini F., Chameleon-inspired multifunctional plasmonic nanoplatforms for biosensing applications,
NPG Asia Materials, ISSN: 1884-4049, DOI: 10.1038/s41427-022-00365-9, Vol.14, pp.18-1-17, 2022Abstract: One of the most fascinating areas in the field of smart biopolymers is biomolecule sensing. Accordingly, multifunctional biomimetic, biocompatible, and stimuli-responsive materials based on hydrogels have attracted much interest. Within this framework, the design of nanostructured materials that do not require any external energy source is beneficial for developing a platform for sensing glucose in body fluids. In this article, we report the realization and application of an innovative platform consisting of two outer layers of a nanocomposite plasmonic hydrogel plus one inner layer of electrospun mat fabricated by electrospinning, where the outer layers exploit photoinitiated free radical polymerization, obtaining a compact and stable device. Inspired by the exceptional features of chameleon skin, plasmonic silver nanocubes are embedded into a poly(N-isopropylacrylamide)-based hydrogel network to obtain enhanced thermoresponsive and antibacterial properties. The introduction of an electrospun mat creates a compatible environment for the homogeneous hydrogel coating while imparting excellent mechanical and structural properties to the final system. Chemical, morphological, and optical characterizations were performed to investigate the structure of the layers and the multifunctional platform. The synergetic effect of the nanostructured system’s photothermal responsivity and antibacterial properties was evaluated. The sensing features associated with the optical properties of silver nanocubes revealed that the proposed multifunctional system is a promising candidate for glucose-sensing applications. Affiliations:
Ziai Y. | - | IPPT PAN | Petronella F. | - | other affiliation | Rinoldi C. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Zakrzewska A. | - | IPPT PAN | Kowalewski T.A. | - | IPPT PAN | Augustyniak W. | - | Mossakowski Medical Research Centre, Polish Academy of Sciences (PL) | Li X. | - | Donghua University (CN) | Calogero A. | - | Sapienza University of Rome (IT) | Sabała I. | - | Mossakowski Medical Research Centre, Polish Academy of Sciences (PL) | Ding B. | - | Donghua University (CN) | De Sio L. | - | Sapienza University of Rome (IT) | Pierini F. | - | IPPT PAN |
| |
17. |
Ziai Y., Rinoldi C., Nakielski P., De Sio L.♦, Pierini F., Smart plasmonic hydrogels based on gold and silver nanoparticles for biosensing application,
Current Opinion in Biomedical Engineering, ISSN: 2468-4511, DOI: 10.1016/j.cobme.2022.100413, Vol.24, pp.100413-1-8, 2022Abstract: The importance of having a fast, accurate, and reusable track for detection has led to an increase investigation in the field of biosensing. Optical biosensing using plasmonic nanoparticles, such as gold and silver, introduces localized surface plasmon resonance (LSPR) sensors. LSPR biosensors are progressive in their sensing precision and detection limit. Also, the possibility to tune the sensing range by varying the size and shape of the particles has made them extremely useful. Hydrogels being hydrophilic 3D networks can be beneficial when used as matrices, because of a more efficient biorecognition. Stimuli-responsive hydrogels can be great candidates, as their response to a stimulus can increase recognition and detection. This article highlights recent advances in combining hydrogels as a matrix and plasmonic nanoparticles as sensing elements. The end capability and diversity of these novel biosensors in different applications in the near future are discussed. Keywords: Smart materials, Plasmonic hydrogel, Biosensing Affiliations:
Ziai Y. | - | IPPT PAN | Rinoldi C. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | De Sio L. | - | Sapienza University of Rome (IT) | Pierini F. | - | IPPT PAN |
| |
18. |
Liu Y.♦, Wang Q.♦, Liu X.♦, Nakielski P., Pierini F., Li X.♦, Yu J.♦, Ding B.♦, Highly adhesive, stretchable and breathable gelatin methacryloyl-based nanofibrous hydrogels for wound dressings,
ACS Applied Bio Materials, ISSN: 2576-6422, DOI: 10.1021/acsabm.1c01087, Vol.5, No.3, pp.1047-1056, 2022Abstract: Adhesive and stretchable nanofibrous hydrogels have attracted extensive attraction in wound dressings, especially for joint wound treatment. However, adhesive hydrogels tend to display poor stretchable behavior. It is still a significant challenge to integrate excellent adhesiveness and stretchability in a nanofibrous hydrogel. Herein, a highly adhesive, stretchable, and breathable nanofibrous hydrogel was developed via an in situ hybrid cross-linking strategy of electrospun nanofibers comprising dopamine (DA) and gelatin methacryloyl (GelMA). Benefiting from the balance of cohesion and adhesion based on photocross-linking of methacryloyl (MA) groups in GelMA and the chemical/physical reaction between GelMA and DA, the nanofibrous hydrogels exhibited tunable adhesive and mechanical properties through varying MA substitution degrees of GelMA. The optimized GelMA60-DA exhibited 2.0 times larger tensile strength (2.4 MPa) with an elongation of about 200%, 2.3 times greater adhesive strength (9.1 kPa) on porcine skin, and 3.1 times higher water vapor transmission rate (10.9 kg m–2 d–1) compared with gelatin nanofibrous hydrogels. In parallel, the GelMA60-DA nanofibrous hydrogels could facilitate cell growth and accelerate wound healing. This work presented a type of breathable nanofibrous hydrogels with excellent adhesive and stretchable capacities, showing great promise as wound dressings. Keywords: nanofibrous hydrogels, hybrid cross-linking, adhesivity, stretchability, breathable capability Affiliations:
Liu Y. | - | Forschugszentrum Jülich, Institute of Complex Systems (DE) | Wang Q. | - | Donghua University (CN) | Liu X. | - | Imperial College London (GB) | Nakielski P. | - | IPPT PAN | Pierini F. | - | IPPT PAN | Li X. | - | Donghua University (CN) | Yu J. | - | Donghua University (CN) | Ding B. | - | Donghua University (CN) |
| |
19. |
Rinoldi C., Lanzi M.♦, Fiorelli R.♦, Nakielski P., Zembrzycki K., Kowalewski T., Urbanek O., Jezierska-Woźniak K.♦, Maksymowicz W.♦, Camposeo A.♦, Bilewicz R.♦, Pisignano D.♦, Sanai N.♦, Pierini F., Pierini F., Three-dimensional printable conductive semi-interpenetrating polymer network hydrogel for neural tissue applications,
BIOMACROMOLECULES, ISSN: 1525-7797, DOI: 10.1021/acs.biomac.1c00524, Vol.22, No.7, pp.3084-3098, 2021Abstract: Intrinsically conducting polymers (ICPs) are widely used to fabricate biomaterials; their application in neural tissue engineering, however, is severely limited because of their hydrophobicity and insufficient mechanical properties. For these reasons, soft conductive polymer hydrogels (CPHs) are recently developed, resulting in a water-based system with tissue-like mechanical, biological, and electrical properties. The strategy of incorporating ICPs as a conductive component into CPHs is recently explored by synthesizing the hydrogel around ICP chains, thus forming a semi-interpenetrating polymer network (semi-IPN). In this work, a novel conductive semi-IPN hydrogel is designed and synthesized. The hybrid hydrogel is based on a poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide) hydrogel where polythiophene is introduced as an ICP to provide the system with good electrical properties. The fabrication of the hybrid hydrogel in an aqueous medium is made possible by modifying and synthesizing the monomers of polythiophene to ensure water solubility. The morphological, chemical, thermal, electrical, electrochemical, and mechanical properties of semi-IPNs were fully investigated. Additionally, the biological response of neural progenitor cells and mesenchymal stem cells in contact with the conductive semi-IPN was evaluated in terms of neural differentiation and proliferation. Lastly, the potential of the hydrogel solution as a 3D printing ink was evaluated through the 3D laser printing method. The presented results revealed that the proposed 3D printable conductive semi-IPN system is a good candidate as a scaffold for neural tissue applications. Affiliations:
Rinoldi C. | - | IPPT PAN | Lanzi M. | - | University of Bologna (IT) | Fiorelli R. | - | other affiliation | Nakielski P. | - | IPPT PAN | Zembrzycki K. | - | IPPT PAN | Kowalewski T. | - | IPPT PAN | Grippo V. | - | other affiliation | Urbanek O. | - | IPPT PAN | Jezierska-Woźniak K. | - | other affiliation | Maksymowicz W. | - | University of Warmia and Mazury in Olsztyn (PL) | Camposeo A. | - | other affiliation | Bilewicz R. | - | other affiliation | Pisignano D. | - | other affiliation | Sanai N. | - | other affiliation | Pierini F. | - | IPPT PAN |
| |
20. |
Rinoldi C., Zargarian S.S., Nakielski P., Li X.♦, Liguori A.♦, Petronella F.♦, Presutti D.♦, Wang Q.♦, Costantini M.♦, De Sio L.♦, Gualandi C.♦, Ding B.♦, Pierini F., Nanotechnology-assisted RNA delivery: from nucleic acid therapeutics to COVID-19 vaccines,
Small Methods, ISSN: 2366-9608, DOI: 10.1002/smtd.202100402, Vol.5, No.9, pp.2100402-1-49, 2021Abstract: In recent years, the main quest of science has been the pioneering of the groundbreaking biomedical strategies needed for achieving a personalized medicine. Ribonucleic acids (RNAs) are outstanding bioactive macromolecules identified as pivotal actors in regulating a wide range of biochemical pathways. The ability to intimately control the cell fate and tissue activities makes RNA-based drugs the most fascinating family of bioactive agents. However, achieving a widespread application of RNA therapeutics in humans is still a challenging feat, due to both the instability of naked RNA and the presence of biological barriers aimed at hindering the entrance of RNA into cells. Recently, material scientists’ enormous efforts have led to the development of various classes of nanostructured carriers customized to overcome these limitations. This work systematically reviews the current advances in developing the next generation of drugs based on nanotechnology-assisted RNA delivery. The features of the most used RNA molecules are presented, together with the development strategies and properties of nanostructured vehicles. Also provided is an in-depth overview of various therapeutic applications of the presented systems, including coronavirus disease vaccines and the newest trends in the field. Lastly, emerging challenges and future perspectives for nanotechnology-mediated RNA therapies are discussed. Affiliations:
Rinoldi C. | - | IPPT PAN | Zargarian S.S. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Li X. | - | Donghua University (CN) | Liguori A. | - | University of Bologna (IT) | Petronella F. | - | other affiliation | Presutti D. | - | Institute of Physical Chemistry, Polish Academy of Sciences (PL) | Wang Q. | - | Donghua University (CN) | Costantini M. | - | Sapienza University of Rome (IT) | De Sio L. | - | Sapienza University of Rome (IT) | Gualandi C. | - | University of Bologna (IT) | Ding B. | - | Donghua University (CN) | Pierini F. | - | IPPT PAN |
| |
21. |
Urbanek O., Wysocka A.♦, Nakielski P., Pierini F., Jagielska E.♦, Sabała I.♦, Staphylococcus aureus specific electrospun wound dressings: influence of immobilization technique on antibacterial efficiency of novel enzybiotic,
Pharmaceutics, ISSN: 1999-4923, DOI: 10.3390/pharmaceutics13050711, Vol.13, No.5, pp.711-1-17, 2021Abstract: The spread of antimicrobial resistance requires the development of novel strategies to combat superbugs. Bacteriolytic enzymes (enzybiotics) that selectively eliminate pathogenic bacteria, including resistant strains and biofilms, are attractive alternatives to antibiotics, also as a component of a new generation of antimicrobial wound dressings. AuresinePlus is a novel, engineered enzybiotic effective against Staphylococcus aureus—one of the most common pathogenic bacteria, found in infected wounds with a very high prevalence of antibiotic resistance. We took advantage of its potent lytic activity, selectivity, and safety to prepare a set of biodegradable PLGA/chitosan fibers generated by electrospinning. Our aim was to produce antimicrobial nonwovens to deliver enzybiotics directly to the infected wound and better control its release and activity. Three different methods of enzyme immobilization were tested: physical adsorption on the previously hydrolyzed surface, and covalent bonding formation using N-hydroxysuccinimide/N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide (NHS/EDC) or glutaraldehyde (GA). The supramolecular structure and functional properties analysis revealed that the selected methods resulted in significant development of nanofibers surface topography resulting in an efficient enzybiotic attachment. Both physically adsorbed and covalently bound enzymes (by NHS/EDC method) exhibited prominent antibacterial activity. Here, we present the extensive comparison between methods for the effective attachment of the enzybiotic to the electrospun nonwovens to generate biomaterials effective against antibiotic-resistant strains. Our intention was to present a comprehensive proof-of-concept study for future antimicrobial wound dressing development. Keywords: antibacterial wound dressings, enzybiotic, fibers functionalization, electrospun wound dressings, Staphylococcus aureus Affiliations:
Urbanek O. | - | IPPT PAN | Wysocka A. | - | other affiliation | Nakielski P. | - | IPPT PAN | Pierini F. | - | IPPT PAN | Jagielska E. | - | other affiliation | Sabała I. | - | Mossakowski Medical Research Centre, Polish Academy of Sciences (PL) |
| |
22. |
Nakielski P., Pawłowska S., Rinoldi C., Ziai Y., De Sio L.♦, Urbanek O., Zembrzycki K., Pruchniewski M.♦, Lanzi M.♦, Salatelli E.♦, Calogero A.♦, Kowalewski T.A., Yarin A.L.♦, Pierini F., Multifunctional platform based on electrospun nanofibers and plasmonic hydrogel: a smart nanostructured pillow for near-Infrared light-driven biomedical applications,
ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.0c13266, Vol.12, No.49, pp.54328-54342, 2020Abstract: Multifunctional nanomaterials with the ability torespond to near-infrared (NIR) light stimulation are vital for thedevelopment of highly efficient biomedical nanoplatforms with apolytherapeutic approach. Inspired by the mesoglea structure ofjellyfish bells, a biomimetic multifunctional nanostructured pillowwith fast photothermal responsiveness for NIR light-controlled on-demand drug delivery is developed. We fabricate a nanoplatformwith several hierarchical levels designed to generate a series ofcontrolled, rapid, and reversible cascade-like structural changesupon NIR light irradiation. The mechanical contraction of thenanostructured platform, resulting from the increase of temper-ature to 42°C due to plasmonic hydrogel−light interaction, causesa rapid expulsion of water from the inner structure, passing through an electrospun membrane anchored onto the hydrogel core. Themutual effects of the rise in temperature and waterflow stimulate the release of molecules from the nanofibers. To expand thepotential applications of the biomimetic platform, the photothermal responsiveness to reach the typical temperature level forperforming photothermal therapy (PTT) is designed. The on-demand drug model penetration into pig tissue demonstrates theefficiency of the nanostructured platform in the rapid and controlled release of molecules, while the high biocompatibility confirmsthe pillow potential for biomedical applications based on the NIR light-driven multitherapy strategy. Keywords: bioinspired materials, NIR-light responsive nanomaterials, multifunctional platforms, electrospun nanofibers, plasmonic hydrogel, photothermal-based polytherapy, on-demand drug delivery Affiliations:
Nakielski P. | - | IPPT PAN | Pawłowska S. | - | IPPT PAN | Rinoldi C. | - | IPPT PAN | Ziai Y. | - | IPPT PAN | De Sio L. | - | Sapienza University of Rome (IT) | Urbanek O. | - | IPPT PAN | Zembrzycki K. | - | IPPT PAN | Pruchniewski M. | - | other affiliation | Lanzi M. | - | University of Bologna (IT) | Salatelli E. | - | University of Bologna (IT) | Calogero A. | - | Sapienza University of Rome (IT) | Kowalewski T.A. | - | IPPT PAN | Yarin A.L. | - | Technion-Israel Institute of Technology (IL) | Pierini F. | - | IPPT PAN |
| |
23. |
Pierini F., Guglielmelli A.♦, Urbanek O., Nakielski P., Pezzi L.♦, Buda R.♦, Lanzi M.♦, Kowalewski T.A., De Sio L.♦, Thermoplasmonic‐activated hydrogel based dynamic light attenuator,
Advanced Optical Materials, ISSN: 2195-1071, DOI: 10.1002/adom.202000324, Vol.8, No.12, pp.2000324-1-7, 2020Abstract: This work describes the morphological, optical, and thermo‐optical properties of a temperature‐sensitive hydrogel poly(N‐isopropylacrylamide‐co‐N‐isopropylmethacrylamide) [P(NIPAm‐co‐NIPMAm]) film containing a specific amount of gold nanorods (GNRs). The light‐induced thermoplasmonic heating of GNRs is used to control the optical scattering of an initially transparent hydrogel film. A hydrated P(NIPAm‐co‐NIPMAm) film is optically clear at room temperature. When heated to temperatures over 37 °C via light irradiation with a resonant source (λ = 810 nm) to the GNRs, a reversible phase transition from a swollen hydrated state to a shrunken dehydrated state occurs. This phenomenon causes a drastic and reversible change in the optical transparency from a clear to an opaque state. A significant red shift (≈30 nm) of the longitudinal band can also be seen due to an increased average refractive index surrounding the GNRs. This change is in agreement with an ad hoc theoretical model which uses a modified Gans theory for ellipsoidal nanoparticles. Morphological analysis of the composite film shows the presence of well‐isolated and randomly dispersed GNRs. Thermo‐optical experiments demonstrate an all‐optically controlled light attenuator (65% contrast ratio) which can be easily integrated in several modern optical applications such as smart windows and light‐responsive optical attenuators. Keywords: active plasmonics, gold nanorods, hydrogels, optical attenuators, optical transparency, plasmonic nanoparticles, polymers Affiliations:
Pierini F. | - | IPPT PAN | Guglielmelli A. | - | University of Calabria (IT) | Urbanek O. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Pezzi L. | - | other affiliation | Buda R. | - | Institute of Physical Chemistry, Polish Academy of Sciences (PL) | Lanzi M. | - | University of Bologna (IT) | Kowalewski T.A. | - | IPPT PAN | De Sio L. | - | Sapienza University of Rome (IT) |
| |
24. |
Pawłowska S., Rinoldi C., Nakielski P., Ziai Y., Urbanek O., Li X.♦, Kowalewski T.A., Ding B.♦, Pierini F., Ultraviolet light‐assisted electrospinning of core–shell fully cross‐linked P(NIPAAm‐co‐NIPMAAm) hydrogel‐based nanofibers for thermally induced drug delivery self‐regulation,
Advanced Materials Interfaces, ISSN: 2196-7350, DOI: 10.1002/admi.202000247, Vol.7, No.12, pp.2000247-1-13, 2020Abstract: Body tissues and organs have complex functions which undergo intrinsic changes during medical treatments. For the development of ideal drug delivery systems, understanding the biological tissue activities is necessary to be able to design materials capable of changing their properties over time, on the basis of the patient's tissue needs. In this study, a nanofibrous thermal‐responsive drug delivery system is developed. The thermo‐responsivity of the system makes it possible to self‐regulate the release of bioactive molecules, while reducing the drug delivery at early stages, thus avoiding high concentrations of drugs which may be toxic for healthy cells. A co‐axial electrospinning technique is used to fabricate core–shell cross‐linked copolymer poly(N‐isopropylacrylamide‐co‐N‐isopropylmethacrylamide) (P(NIPAAm‐co‐NIPMAAm)) hydrogel‐based nanofibers. The obtained nanofibers are made of a core of thermo‐responsive hydrogel containing a drug model, while the outer shell is made of poly‐l‐lactide‐co‐caprolactone (PLCL). The custom‐made electrospinning apparatus enables the in situ cross‐linking of P(NIPAAm‐co‐NIPMAAm) hydrogel into a nanoscale confined space, which improves the electrospun nanofiber drug dosing process, by reducing its provision and allowing a self‐regulated release control. The mechanism of the temperature‐induced release control is studied in depth, and it is shown that the system is a promising candidate as a "smart" drug delivery platform. Keywords: biomimetic nanomaterials, electrospun core–shell nanofibers, hierarchical nanostructures, smart drug delivery, thermo‐responsive hydrogels Affiliations:
Pawłowska S. | - | IPPT PAN | Rinoldi C. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Ziai Y. | - | IPPT PAN | Urbanek O. | - | IPPT PAN | Li X. | - | Donghua University (CN) | Kowalewski T.A. | - | IPPT PAN | Ding B. | - | Donghua University (CN) | Pierini F. | - | IPPT PAN |
| |
25. |
Wang L.♦, Lv H.♦, Liu L.♦, Zhang Q.♦, Nakielski P., Si Y.♦, Cao J.♦, Li X.♦, Pierini F., Yu J.♦, Ding B.♦, Electrospun nanofiber-reinforced three-dimensional chitosan matrices: architectural, mechanical and biological properties,
JOURNAL OF COLLOID AND INTERFACE SCIENCE, ISSN: 0021-9797, DOI: 10.1016/j.jcis.2020.01.016, Vol.565, pp.416-425, 2020Abstract: The poor intrinsic mechanical properties of chitosan hydrogels have greatly hindered their practical applications. Inspired by nature, we proposed a strategy to enhance the mechanical properties of chitosan hydrogels by construction of a nanofibrous and cellular architecture in the hydrogel without toxic chemical crosslinking. To this end, electrospun nanofibers including cellulose acetate, polyacrylonitrile, and SiO2 nanofibers were introduced into chitosan hydrogels by homogenous dispersion and lyophilization. With the addition of 30% cellulose acetate nanofibers, the cellular structure could be maintained even in water without crosslinking, and integration of 60% of the nanofibers could guarantee the free-standing structure of the chitosan hydrogel with a low solid content of 1%. Moreover, the SiO2 nanofiber-reinforced chitosan (SiO2 NF/CS) three-dimensional (3D) matrices exhibit complete shape recovery from 80% compressive strain and excellent injectability. The cellular architecture and nanofibrous structure in the SiO2 NF/CS matrices are beneficial for human mesenchymal stem cell adhesion and stretching. Furthermore, the SiO2 NF/CS matrices can also act as powerful vehicles for drug delivery. As an example, bone morphogenetic protein 2 could be immobilized on SiO2 NF/CS matrices to induce osteogenic differentiation. Together, the electrospun nanofiber-reinforced 3D chitosan matrices exhibited improved mechanical properties and enhanced biofunctionality, showing great potential in tissue engineering. Keywords: chitosan hydrogel, electrospun nanofiber, mechanical property, nanofibrous matrix, tissue engineering Affiliations:
Wang L. | - | Imperial College London (GB) | Lv H. | - | Medical College of Soochow University (CN) | Liu L. | - | Donghua University (CN) | Zhang Q. | - | Medical College of Soochow University (CN) | Nakielski P. | - | IPPT PAN | Si Y. | - | Donghua University (CN) | Cao J. | - | other affiliation | Li X. | - | Donghua University (CN) | Pierini F. | - | IPPT PAN | Yu J. | - | Donghua University (CN) | Ding B. | - | Donghua University (CN) |
| |
26. |
Nakielski P., Pierini F., Blood interactions with nano- and microfibers: recent advances, challenges and applications in nano- and microfibrous hemostatic agents,
Acta Biomaterialia, ISSN: 1742-7061, DOI: 10.1016/j.actbio.2018.11.029, Vol.84, pp.63-76, 2019Abstract: Nanofibrous materials find a wide range of applications, such as vascular grafts, tissue-engineered scaffolds, or drug delivery systems. This phenomenon can be attributed to almost arbitrary biomaterial modification opportunities created by a multitude of polymers used to form nanofibers, as well as by surface functionalization methods. Among these applications, the hemostatic activity of nanofibrous materials is gaining more and more interest in biomedical research. It is therefore crucial to find both materials and nanofiber structural properties that affect organism responses. The present review critically analyzes the response of blood elements to natural and synthetic polymers, and their blends and composites. Also assessed in this review is the incorporation of pro-coagulative substances or drugs that can decrease bleeding time. The review also discusses the main animal models that were used to assess hemostatic agent safety and effectiveness. Keywords: blood-biomaterial interactions, coagulation, electrospinning, nanofibers, platelets, hemorrhage Affiliations:
Nakielski P. | - | IPPT PAN | Pierini F. | - | IPPT PAN |
| |
27. |
Pierini F., Nakielski P., Urbanek O., Pawłowska S., Lanzi M.♦, De Sio L.♦, Kowalewski T.A., Polymer-Based Nanomaterials for Photothermal Therapy: From Light-Responsive to Multifunctional Nanoplatforms for Synergistically Combined Technologies,
BIOMACROMOLECULES, ISSN: 1525-7797, DOI: 10.1021/acs.biomac.8b01138, Vol.19, No.11, pp.4147-4167, 2018Abstract: Materials for the treatment of cancer have been studied comprehensively over the past few decades. Among the various kinds of biomaterials, polymer-based nanomaterials represent one of the most interesting research directions in nanomedicine because their controlled synthesis and tailored designs make it possible to obtain nanostructures with biomimetic features and outstanding biocompatibility. Understanding the chemical and physical mechanisms behind the cascading stimuli-responsiveness of smart polymers is fundamental for the design of multifunctional nanomaterials to be used as photothermal agents for targeted polytherapy. In this review, we offer an in-depth overview of the recent advances in polymer nanomaterials for photothermal therapy, describing the features of three different types of polymer-based nanomaterials. In each case, we systematically show the relevant benefits, highlighting the strategies for developing light-controlled multifunctional nanoplatforms that are responsive in a cascade manner and addressing the open issues by means of an inclusive state-of-the-art review. Moreover, we face further challenges and provide new perspectives for future strategies for developing novel polymeric nanomaterials for photothermally assisted therapies. Affiliations:
Pierini F. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Urbanek O. | - | IPPT PAN | Pawłowska S. | - | IPPT PAN | Lanzi M. | - | University of Bologna (IT) | De Sio L. | - | Sapienza University of Rome (IT) | Kowalewski T.A. | - | IPPT PAN |
| |
28. |
Pierini F., Lanzi M.♦, Nakielski P., Pawłowska S., Urbanek O., Zembrzycki K., Kowalewski T.A., Single-Material Organic Solar Cells Based on Electrospun Fullerene-Grafted Polythiophene Nanofibers,
Macromolecules, ISSN: 0024-9297, DOI: 10.1021/acs.macromol.7b00857, Vol.50, No.13, pp.4972-4981, 2017Abstract: Highly efficient single-material organic solar cells (SMOCs) based on fullerene-grafted polythiophenes were fabricated by incorporating electrospun one-dimensional (1D) nanostructures obtained from polymer chain stretching. Poly(3-alkylthiophene) chains were chemically tailored in order to reduce the side effects of charge recombination which severely affected SMOC photovoltaic performance. This enabled us to synthesize a donor–acceptor conjugated copolymer with high solubility, molecular weight, regioregularity, and fullerene content. We investigated the correlations among the active layer hierarchical structure given by the inclusion of electrospun nanofibers and the solar cell photovoltaic properties. The results indicated that SMOC efficiency can be strongly increased by optimizing the supramolecular and nanoscale structure of the active layer, while achieving the highest reported efficiency value (PCE = 5.58%). The enhanced performance may be attributed to well-packed and properly oriented polymer chains. Overall, our work demonstrates that the active material structure optimization obtained by including electrospun nanofibers plays a pivotal role in the development of efficient SMOCs and suggests an interesting perspective for the improvement of copolymer-based photovoltaic device performance using an alternative pathway. Affiliations:
Pierini F. | - | IPPT PAN | Lanzi M. | - | University of Bologna (IT) | Nakielski P. | - | IPPT PAN | Pawłowska S. | - | IPPT PAN | Urbanek O. | - | IPPT PAN | Zembrzycki K. | - | IPPT PAN | Kowalewski T.A. | - | IPPT PAN |
| |
29. |
Pawłowska S., Nakielski P., Pierini F., Piechocka I.K., Zembrzycki K., Kowalewski T.A., Lateral migration of electrospun hydrogel nanofilaments in an oscillatory flow,
PLOS ONE, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0187815, Vol.12, No.11, pp.1-21, 2017Abstract: The recent progress in bioengineering has created great interest in the dynamics and manipulation of long, deformable macromolecules interacting with fluid flow. We report experimental data on the cross-flow migration, bending, and buckling of extremely deformable hydrogel nanofilaments conveyed by an oscillatory flow into a microchannel. The changes in migration velocity and filament orientation are related to the flow velocity and the filament's initial position, deformation, and length. The observed migration dynamics of hydrogel filaments qualitatively confirms the validity of the previously developed worm-like bead-chain hydrodynamic model. The experimental data collected may help to verify the role of hydrodynamic interactions in molecular simulations of long molecular chains dynamics. Affiliations:
Pawłowska S. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Pierini F. | - | IPPT PAN | Piechocka I.K. | - | IPPT PAN | Zembrzycki K. | - | IPPT PAN | Kowalewski T.A. | - | IPPT PAN |
| |
30. |
Pierini F., Lanzi M.♦, Nakielski P., Kowalewski T.A., Electrospun Polyaniline-Based Composite Nanofibers: Tuning the Electrical Conductivity by Tailoring the Structure of Thiol-Protected Metal Nanoparticles,
Journal of Nanomaterials, ISSN: 1687-4110, DOI: 10.1155/2017/6142140, Vol.2017, pp.6142140-1-10, 2017Abstract: Composite nanofibers made of a polyaniline-based polymer blend and different thiol-capped metal nanoparticles were prepared using ex situ synthesis and electrospinning technique. The effects of the nanoparticle composition and chemical structure on the electrical properties of the nanocomposites were investigated. This study confirmed that Brust's procedure is an effective method for the synthesis of sub-10 nm silver, gold, and silver-gold alloy nanoparticles protected with different types of thiols. Electron microscopy results demonstrated that electrospinning is a valuable technique for the production of composite nanofibers with similar morphology and revealed that nanofillers are well-dispersed into the polymer matrix. X-ray diffraction tests proved the lack of a significant influence of the nanoparticle chemical structure on the polyaniline chain arrangement. However, the introduction of conductive nanofillers in the polymer matrix influences the charge transport noticeably improving electrical conductivity. The enhancement of electrical properties is mediated by the nanoparticle capping layer structure. The metal nanoparticle core composition is a key parameter, which exerted a significant influence on the conductivity of the nanocomposites. These results prove that the proposed method can be used to tune the electrical properties of nanocomposites. Affiliations:
Pierini F. | - | IPPT PAN | Lanzi M. | - | University of Bologna (IT) | Nakielski P. | - | IPPT PAN | Kowalewski T.A. | - | IPPT PAN |
| |
31. |
Pierini F., Lanzi M.♦, Nakielski P., Pawłowska S., Zembrzycki K., Kowalewski T.A., Electrospun poly(3-hexylthiophene)/poly(ethylene oxide)/graphene oxide composite nanofibers: effects of graphene oxide reduction,
Polymers for Advanced Technologies, ISSN: 1042-7147, DOI: 10.1002/pat.3816, Vol.27, No.11, pp.1465-1475, 2016Abstract: In this article, we report on the production by electrospinning of P3HT/PEO, P3HT/PEO/GO, and P3HT/PEO/rGO nanofibers in which the filler is homogeneously dispersed and parallel oriented along the fibers axis. The effect of nanofillers' presence inside nanofibers and GO reduction was studied, in order to reveal the influence of the new hierarchical structure on the electrical conductivity and mechanical properties. An in-depth characterization of the purity and regioregularity of the starting P3HT as well as the morphology and chemical structure of GO and rGO was carried out. The morphology of the electrospun nanofibers was examined by both scanning and transmission electron microscopy. The fibrous nanocomposites are also characterized by differential scanning calorimetry to investigate their chemical structure and polymer chains arrangements. Finally, the electrical conductivity of the electrospun fibers and the elastic modulus of the single fibers are evaluated using a four-point probe method and atomic force microscopy nanoindentation, respectively. The electrospun materials crystallinity as well as the elastic modulus increase with the addition of the nanofillers while the electrical conductivity is positively influenced by the GO reduction. Keywords: electrospun composite nanofibers, poly(3-hexylthiophene), graphene oxide, electrical conductivity, mechanical properties Affiliations:
Pierini F. | - | IPPT PAN | Lanzi M. | - | University of Bologna (IT) | Nakielski P. | - | IPPT PAN | Pawłowska S. | - | IPPT PAN | Zembrzycki K. | - | IPPT PAN | Kowalewski T.A. | - | IPPT PAN |
| |
32. |
Pierini F., Zembrzycki K., Nakielski P., Pawłowska S., Kowalewski T.A., Atomic force microscopy combined with optical tweezers (AFM/OT),
MEASUREMENT SCIENCE AND TECHNOLOGY, ISSN: 0957-0233, DOI: 10.1088/0957-0233/27/2/025904, Vol.27, pp.025904-1-11, 2016Abstract: The role of mechanical properties is essential to understand molecular, biological materials, and nanostructures dynamics and interaction processes. Atomic force microscopy (AFM) is the most commonly used method of direct force evaluation, but due to its technical limitations this single probe technique is unable to detect forces with femtonewton resolution. In this paper we present the development of a combined atomic force microscopy and optical tweezers (AFM/OT) instrument. The focused laser beam, on which optical tweezers are based, provides us with the ability to manipulate small dielectric objects and to use it as a high spatial and temporal resolution displacement and force sensor in the same AFM scanning zone. We demonstrate the possibility to develop a combined instrument with high potential in nanomechanics, molecules manipulation and biological studies. AFM/OT equipment is described and characterized by studying the ability to trap dielectric objects and quantifying the detectable and applicable forces. Finally, optical tweezers calibration methods and instrument applications are given. Keywords: optical trap, nanomanipulation, nanomechanics, femtonewton forces Affiliations:
Pierini F. | - | IPPT PAN | Zembrzycki K. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Pawłowska S. | - | IPPT PAN | Kowalewski T.A. | - | IPPT PAN |
| |
33. |
Sulejczak D.♦, Taraszewska A.♦, Chrapusta S.J.♦, Dziewulska D.♦, Nakielski P., Rafałowska J.♦, Nanofiber mat spinal cord dressing-released glutamate impairs blood-spinal cord barrier,
FOLIA NEUROPATHOLOGICA, ISSN: 1641-4640, DOI: 10.5114/fn.2016.64818, Vol.54, No.4, pp.392-404, 2016Abstract: An excessive glutamate level can result in excitotoxic damage and death of central nervous system (CNS) cells, and is involved in the pathogenesis of many CNS diseases. It may also be related to a failure of the blood-spinal cord barrier (BSCB). This study was aimed at examining the effects of extended administration of monosodium glutamate on the BSCB and spinal cord cells in adult male Wistar rats. The glutamate was delivered by subarachnoidal application of glutamate-carrying electrospun nanofiber mat dressing at the lumbar enlargement level. Half of the rats with the glutamate-loaded mat application were treated systemically with the histone deacetylase inhibitor valproic acid. A group of intact rats and a rat group with subarachnoidal application of an ‘empty’ (i.e., carrying no glutamate) nanofiber mat dressing served as controls. All the rats were euthanized three weeks later and lumbar fragments of their spinal cords were harvested for histological, immunohistochemical and ultrastructural studies. The samples from controls revealed normal parenchyma and BSCB morphology, whereas those from rats with the glutamate-loaded nanofiber mat dressing showed many intraparenchymal microhemorrhages of variable sizes. The capillaries in the vicinity of the glutamate-carrying dressing (in the meninges and white matter alike) were edematous and leaky, and their endothelial cells showed degenerative changes: extensive swelling, enhanced vacuolization and the presence of vascular intraluminal projections. However, endothelial tight junctions were generally well preserved. Some endothelial cells were dying by necrosis or apoptosis. The adjacent parenchyma showed astrogliosis with astrocytic hypertrophy and swelling of perivascular astrocytic feet. Neurons in the parenchyma revealed multiple symptoms of degeneration, including, inter alia, perikaryal, dendritic and axonal swelling, and destruction of organelles. All the damage symptoms were slightly less severe in the rats given valproic acid treatment, and were absent from both the intact rats and the rats with ‘empty’ nanofiber mat dressing. These results demonstrate that glutamate-loaded nanofiber mat dressing can locally create glutamate levels capable of damaging BSCB and that the resulting damage can be mitigated with concurrent systemic valproate treatment. Keywords: astrocyte, blood-spinal cord barrier, CNS damage, degeneration, endothelium, excitotoxicity, glutamate, neuron, valproate, vessels Affiliations:
Sulejczak D. | - | other affiliation | Taraszewska A. | - | other affiliation | Chrapusta S.J. | - | Mossakowski Medical Research Centre, Polish Academy of Sciences (PL) | Dziewulska D. | - | Mossakowski Medical Research Centre, Polish Academy of Sciences (PL) | Nakielski P. | - | IPPT PAN | Rafałowska J. | - | other affiliation |
| |
34. |
Nakielski P., Pawłowska S., Pierini F., Liwińska W.♦, Hejduk P.♦, Zembrzycki K., Zabost E.♦, Kowalewski T.A., Hydrogel nanofilaments via core-shell electrospinning,
PLOS ONE, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0129816, Vol.10, No.6, pp.e0129816-1-16, 2015Abstract: Recent biomedical hydrogels applications require the development of nanostructures with controlled diameter and adjustable mechanical properties. Here we present a technique for the production of flexible nanofilaments to be used as drug carriers or in microfluidics, with deformability and elasticity resembling those of long DNA chains. The fabrication method is based on the core-shell electrospinning technique with core solution polymerisation post electrospinning. Produced from the nanofibers highly deformable hydrogel nanofilaments are characterised by their Brownian motion and bending dynamics. The evaluated mechanical properties are compared with AFM nanoindentation tests.
Correction: Hydrogel Nanofilaments via Core-Shell Electrospinning, Nakielski P., Pawłowska S., Pierini F., Liwińska W., Hejduk P., Zembrzycki K., Zabost E., Kowalewski T.A., PLOS ONE, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0133458, Vol.10, No.7, pp.e0133458-1-2, 2015
Keywords: Gels, Nanomaterials, Atomic force microscopy, Polymerization, Bending, Mass diffusivity, Mechanical properties, Hydrodynamics Affiliations:
Nakielski P. | - | IPPT PAN | Pawłowska S. | - | IPPT PAN | Pierini F. | - | IPPT PAN | Liwińska W. | - | other affiliation | Hejduk P. | - | other affiliation | Zembrzycki K. | - | IPPT PAN | Zabost E. | - | University of Warsaw (PL) | Kowalewski T.A. | - | IPPT PAN |
| |
35. |
Nakielski P., Kowalczyk T., Zembrzycki K., Kowalewski T.A., Experimental and numerical evaluation of drug release from nanofiber mats to brain tissue,
Journal of Biomedical Materials Research Part B: Applied Biomaterials, ISSN: 1552-4973, DOI: 10.1002/jbm.b.33197, Vol.103B, No.2, pp.282-291, 2015Abstract: Drug delivery systems based on nanofibrous mats appear to be a promising healing practice for preventing brain neurodegeneration after surgery. One of the problems encountered during planning and constructing optimal delivery system based on nanofibrous mats is the estimation of parameters crucial for predicting drug release dynamics. This study describes our experimental setup allowing for spatial and temporary evaluation of drug release from nanofibrous polymers to obtain data necessary to validate appropriate numerical models. We applied laser light sheet method to illuminate released fluorescent drug analog and CCD camera for imaging selected cross-section of the investigated volume. Transparent hydrogel was used as a brain tissue phantom. The proposed setup allows for continuous observation of drug analog (fluorescent dye) diffusion for time span of several weeks. Images captured at selected time intervals were processed to determine concentration profiles and drug release kinetics. We used presented method to evaluate drug release from several polymers to validate numerical model used for optimizing nanofiber system for neuroprotective dressing. Keywords: neural therapy, brain phantom, drug delivery, laser light sheet, computational modeling, nanofibers Affiliations:
Nakielski P. | - | IPPT PAN | Kowalczyk T. | - | IPPT PAN | Zembrzycki K. | - | IPPT PAN | Kowalewski T.A. | - | IPPT PAN |
| |
36. |
Pokrywczyńska M.♦, Jundziłł A.♦, Adamowicz J.♦, Kowalczyk T., Warda K.♦, Rasmus M.♦, Buchholz Ł.♦, Krzyżanowska S.♦, Nakielski P., Chmielewski T., Bodnar M.♦, Marszałek A.♦, Dębski R.♦, Frontczak-Baniewicz M.M.♦, Mikułowski G., Nowacki M.♦, Kowalewski T.A., Drewa T.♦, Is the Poly (L- Lactide- Co– Caprolactone) Nanofibrous Membrane Suitable for Urinary Bladder Regeneration?,
PLOS ONE, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0105295, Vol.9, No.8, pp.105295-1-12, 2014Abstract: The purpose of this study was to compare: a new five-layered poly (L–lactide–co–caprolactone) (PLC) membrane and small intestinal submucosa (SIS) as a control in rat urinary bladder wall regeneration. The five-layered poly (L–lactide–co–caprolactone) membrane was prepared by an electrospinning process. Adipose tissue was harvested from five 8-week old male Wistar rats. Adipose derived stem cells (ADSCs) were seeded in a density of 3×106 cells/cm2 onto PLC membrane and SIS scaffolds, and cultured for 5-7 days in the stem cell culture medium. Twenty male Wistar rats were randomly divided into five equal groups. Augmentation cystoplasty was performed in a previously created dome defect. Groups: (I) PLC+ 3×106ADSCs; (II) SIS+ 3×106ADSCs; (III) PLC; (IV) SIS; (V) control. Cystography was performed after three months. The reconstructed urinary bladders were evaluated in H&E and Masson's trichrome staining. Regeneration of all components of the normal urinary bladder wall was observed in bladders augmented with cell-seeded SIS matrices. The urinary bladders augmented with SIS matrices without cells showed fibrosis and graft contraction. Bladder augmentation with the PLC membrane led to numerous undesirable events including: bladder wall perforation, fistula or diverticula formation, and incorporation of the reconstructed wall into the bladder lumen. The new five-layered poly (L–lactide–co–caprolactone) membrane possesses poorer potential for regenerating the urinary bladder wall compared with SIS scaffold. Keywords: urinary bladder regeneration, electrospinning Affiliations:
Pokrywczyńska M. | - | other affiliation | Jundziłł A. | - | other affiliation | Adamowicz J. | - | Nicolaus Copernicus University (PL) | Kowalczyk T. | - | IPPT PAN | Warda K. | - | other affiliation | Rasmus M. | - | Nicolaus Copernicus University (PL) | Buchholz Ł. | - | Nicolaus Copernicus University (PL) | Krzyżanowska S. | - | other affiliation | Nakielski P. | - | IPPT PAN | Chmielewski T. | - | IPPT PAN | Bodnar M. | - | Nicolaus Copernicus University (PL) | Marszałek A. | - | Nicolaus Copernicus University (PL) | Dębski R. | - | Nicolaus Copernicus University (PL) | Frontczak-Baniewicz M.M. | - | Mossakowski Medical Research Centre, Polish Academy of Sciences (PL) | Mikułowski G. | - | IPPT PAN | Nowacki M. | - | other affiliation | Kowalewski T.A. | - | IPPT PAN | Drewa T. | - | Nicolaus Copernicus University (PL) |
| |
37. |
Rafałowska J.♦, Sulejczak D.♦, Chrapusta S.J.♦, Gadamski R.♦, Taraszewska A.♦, Nakielski P., Kowalczyk T., Dziewulska D.♦, Non-woven nanofiber mats – a new perspective for experimental studies of the central nervous system?,
FOLIA NEUROPATHOLOGICA, ISSN: 1641-4640, DOI: 10.5114/fn.2014.47841, Vol.52, No.4, pp.407-416, 2014Abstract: (Sub)chronic local drug application is clearly superior to systemic administration, but may be associated with substantial obstacles, particularly regarding the applications to highly sensitive central nervous system (CNS) structures that are shielded from the outer environment by the blood-brain barrier. Violation of the integrity of the barrier and CNS tissues by a permanently implanted probe or cannula meant for prolonged administration of drugs into specific CNS structures can be a severe confounding factor because of the resulting inflammatory reactions. In this study, we tested the utility of a novel way for (sub)chronic local delivery of highly active (i.e., used in very low amounts) drugs to the rat spinal cord employing a non-woven nanofiber mat dressing. To this end, we compared the morphology and motoneuron ( + ) counts in spinal cord cervical and lumbar segments between rats with glutamate-loaded nanofiber mats applied to the lumbar enlargement and rats with analogical implants carrying no glutamate. Half of the rats with glutamate-loaded implants were given daily valproate treatment to test its potential for counteracting the detrimental effects of glutamate excess. The mats were prepared in-house by electrospinning of an emulsion made of a solution of the biocompatible and biodegradable poly(L-lactide-co-caprolactone) polymer in a mixture of organic solvents, an aqueous phase with or without monosodium glutamate, and sodium dodecyl sulfate as an emulsifier; the final glutamate content was 1.4 µg/mg of the mat. Three weeks after mat implantation there was no inflammation or considerable damage of the spinal cord motoneuron population in the rats with the subarachnoid dressing of a glutamate-free mat, whereas the spinal cords of the rats with glutamate-loaded nanofiber mats showed clear symptoms of excitotoxic damage and a substantial increase in dying/damaged motoneuron numbers in both segments studied. The rats given systemic valproate treatment showed significantly lower percentages of damaged/dying motoneurons in their lumbar enlargements. These results demonstrate the capacity of nanofiber mats for generation of neurotoxic glutamate in the rat CNS. However, the tested nanofiber mats need further improvements aimed at extending the period of effective drug release and rendering the release more steady. Keywords: CNS injury, electrospinning, excitotoxicity, glutamate, motoneuron, nanofibers, neurodegeneration, spinal cord, valproate Affiliations:
Rafałowska J. | - | other affiliation | Sulejczak D. | - | other affiliation | Chrapusta S.J. | - | Mossakowski Medical Research Centre, Polish Academy of Sciences (PL) | Gadamski R. | - | Mossakowski Medical Research Centre, Polish Academy of Sciences (PL) | Taraszewska A. | - | other affiliation | Nakielski P. | - | IPPT PAN | Kowalczyk T. | - | IPPT PAN | Dziewulska D. | - | Mossakowski Medical Research Centre, Polish Academy of Sciences (PL) |
| |
38. |
Sulejczak D.♦, Andrychowski J.♦, Kowalczyk T., Nakielski P., Frontczak-Baniewicz M.M.♦, Kowalewski T.A., Electrospun nanofiber mat as a protector against the consequences of brain injury,
FOLIA NEUROPATHOLOGICA, ISSN: 1641-4640, DOI: 10.5114/fn.2014.41744, Vol.52, No.1, pp.56-69, 2014Abstract: Traumatic/surgical brain injury can initiate a cascade of pathological changes that result, in the long run, in severe damage of brain parenchyma and encephalopathy. Excessive scarring can also interfere with brain function and the glial scar formed may hamper the restoration of damaged brain neural pathways. In this preliminary study we aimed to investigate the effect of dressing with an L-lactide-caprolactone copolymer nanofiber net on brain wound healing and the fate of the formed glial scar. Our rat model of surgical brain injury (SBI) of the fronto-temporal region of the sensorimotor cortex imitates well the respective human neurosurgery situation. Brains derived from SBI rats with net-undressed wound showed massive neurodegeneration, entry of systemic inflammatory cells into the brain parenchyma and the astrogliosis due to massive glial scar formation. Dressing of the wound with the nanofiber net delayed and reduced the destructive phenomena. We observed also a reduction in the scar thickness. The observed modification of local inflammation and cicatrization suggest that nanofiber nets could be useful in human neurosurgery. Keywords: brain injury, L-lactide-caprolactone copolymer nanofiber net, glial scar, neurodegeneration Affiliations:
Sulejczak D. | - | other affiliation | Andrychowski J. | - | Medical University of Warsaw (PL) | Kowalczyk T. | - | IPPT PAN | Nakielski P. | - | IPPT PAN | Frontczak-Baniewicz M.M. | - | Mossakowski Medical Research Centre, Polish Academy of Sciences (PL) | Kowalewski T.A. | - | IPPT PAN |
| |
39. |
Nakielski P., Symulacje numeryczne procesu desorpcji i dyfuzji leku w materiale z nanowłókien,
MODELOWANIE INŻYNIERSKIE, ISSN: 1896-771X, Vol.48, pp.99-111, 2013Abstract: W pracy przedstawiono symulacje metodą elementów skończonych procesu desorpcji leku z powierzchni nanowłókien oraz dyfuzji wewnątrz porowatego materiału w zależności od wzajemnej konfiguracji włókien. Zbadano uwalnianie leku w różnych typach ułożenia włókien w materiale od idealnie ukierunkowanych po włókna ułożone nieregularnie. Dodatkowo przeanalizowano wpływ lokalnego zagęszczenia włókien i porowatości materiału na proces dyfuzji w macie. Przedstawiony model porównano z wynikiem eksperymentalnym uwalniania Rodaminy B z elektroprzędzonych nanowłókien oraz rozwiązaniem analitycznym dyfuzji z płaskiej płyty z homogenicznie rozmieszczonym lekiem. Celem przeprowadzonych obliczeń jest znalezienie kluczowych parametrów materiału, stosowanego jako system uwalniania leków w zapobieganiu neurodegeneracji po operacjach neurochirurgicznych. Keywords: desorpcja, dyfuzja, FRAP, nanowłókna, uwalnianie leków Affiliations:
| |
40. |
Nakielski P., Kowalczyk T., Kowalewski T.A., Drug delivery system based on polymer nano-fibers,
Prace IPPT - IFTR Reports, ISSN: 2299-3657, Vol.4b, pp.1-6, 2013Abstract: This work presents our attempts to characterize release of two model drugs from electrospun polymer nanofibers. Such drug delivery system offers great potential for applications in medicine especially as neurosurgery protective membranes. Proper delivery of drugs requires precise control of the drug diffusion process during the release for days or even weeks. Lipophilic model drug Rhodamine B and hydrophilic Bovine Serum Albumin conjugated with Fluoresceine (BSA - FITC) were embedded in electrospun poly(L -lactide-co -ε-caprolactone) (PLC) nanofibers. Release of Rhodamine B showed saturation in cumulative release profile at 60% and 86% for 1.5% and 3% wt. initial drug content, respectively. Nanofibers electrospun from emulsion released almost entire drug encapsulated in water vesicles inside the nanofibers. Possible location of vesicles close to the surface of the nanofibers exposed them for surrounding fluid and caused leaching of the drug. In this case encapsulation of drug in emulsion prevented the initial burst release.Dependence of a drug release and composition of nanofiber is essential for production of drug delivery systems. Mathematical model constructed with this data allows to avoid tedious experimental work. This research was supported by Ministry of Science and Higher Education, National Centre for Research and Development Project grant no. R13008110. The first author has been supported with a scholarship from the European Social Fund, Human Capital Operational Programme. Keywords: nanofibres, drug delivery, vesicles Affiliations:
Nakielski P. | - | IPPT PAN | Kowalczyk T. | - | IPPT PAN | Kowalewski T.A. | - | IPPT PAN |
| |